湖北恩施龙凤民族初级中学2023年中考数学猜题卷含解析.doc
-
资源ID:88307823
资源大小:1.16MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北恩施龙凤民族初级中学2023年中考数学猜题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1在3,0,2, 四个数中,最小的数是( )A3B0C2D2已知a-2b=-2,则4-2a+4b的值是()A0B2C4D83为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()ABCD4如图,已知点A在反比例函数y上,ACx轴,垂足为点C,且AOC的面积为4,则此反比例函数的表达式为()AyByCyDy5若分式的值为零,则x的值是( )A1BCD26已知圆心在原点O,半径为5的O,则点P(-3,4)与O的位置关系是( )A在O内 B在O上C在O外 D不能确定7如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x0)与AB相交于点D,与BC相交于点E,若BD=3AD,且ODE的面积是9,则k的值是( )AB CD128下列二次根式中,最简二次根式的是()ABCD9如图,将ABC绕点B顺时针旋转60°得DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()AADBCBDAC=ECBCDEDAD+BC=AE10已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y2二、填空题(本大题共6个小题,每小题3分,共18分)11若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)_ 0,(填“”、“”或“”)12如图,将一个长方形纸条折成如图的形状,若已知2=55°,则1=_13如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则1的度数为_14某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为_.15三角形的每条边的长都是方程的根,则三角形的周长是 16如图,点G是ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将ADG绕点D旋转180°得到BDE,ABC的面积=_cm1三、解答题(共8题,共72分)17(8分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间18(8分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线(1)抛物线的表达式;(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式19(8分)如图,AC=DC,BC=EC,ACD=BCE求证:A=D20(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?21(8分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(3,0)、B(1,0)(1)求平移后的抛物线的表达式(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形BOD相似?若存在,求点M坐标;若不存在,说明理由22(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?23(12分)如图,在ABC中,点D,E分别在边AB,AC上,AED=B,射线AG分别交线段DE,BC于点F,G,且求证:ADFACG;若,求的值 24如图,在平面直角坐标系中,直线经过点和,双曲线经过点B(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0t12),连接BC,作BDBC交x轴于点D,连接CD,当点C在双曲线上时,求t的值;在0t6范围内,BCD的大小如果发生变化,求tanBCD的变化范围;如果不发生变化,求tanBCD的值;当时,请直接写出t的值参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据比较实数大小的方法进行比较即可根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小2、D【解析】a-2b=-2,-a+2b=2,-2a+4b=4,4-2a+4b=4+4=8,故选D.3、C【解析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误故选:C【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.4、C【解析】由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.【详解】SAOC=4,k=2SAOC=8;y=;故选C【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;5、A【解析】试题解析:分式的值为零,|x|1=0,x+10,解得:x=1故选A6、B.【解析】试题解析:OP=5,根据点到圆心的距离等于半径,则知点在圆上故选B考点:1.点与圆的位置关系;2.坐标与图形性质7、C【解析】设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据SODE=S矩形OCBA-SAOD-SOCE-SBDE= 9求出k.【详解】四边形OCBA是矩形,AB=OC,OA=BC,设B点的坐标为(a,b),BD=3AD,D(,b),点D,E在反比例函数的图象上,=k,E(a, ),SODE=S矩形OCBA-SAOD-SOCE-SBDE=ab- -(b-)=9,k=,故选:C【点睛】考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.8、C【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C考点:最简二次根式9、C【解析】利用旋转的性质得BA=BD,BC=BE,ABD=CBE=60°,C=E,再通过判断ABD为等边三角形得到AD=AB,BAD=60°,则根据平行线的性质可判断ADBC,从而得到DAC=C,于是可判断DAC=E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用CBE=60°,由于E的度数不确定,所以不能判定BCDE【详解】ABC绕点B顺时针旋转60°得DBE,点C的对应点E恰好落在AB的延长线上,BA=BD,BC=BE,ABD=CBE=60°,C=E,ABD为等边三角形,AD=AB,BAD=60°,BAD=EBC,ADBC,DAC=C,DAC=E,AE=AB+BE,而AD=AB,BE=BC,AD+BC=AE,CBE=60°,只有当E=30°时,BCDE故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等边三角形的性质10、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定mn以及mn的符号,可得结果【详解】解:根据题意得:m1n,且|m|n|,mn1,mn1,(mn)(mn)1故答案为【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键12、1【解析】由折叠可得3=180°22,进而可得3的度数,然后再根据两直线平行,同旁内角互补可得1+3=180°,进而可得1的度数【详解】解:由折叠可得3=180°22=180°1°=70°,ABCD,1+3=180°,1=180°70°=1°,故答案为113、60°【解析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.14、【解析】根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可【详解】设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:1故答案为:1【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键15、6或2或12【解析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算【详解】由方程,得=2或1当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2综上所述此三角形的周长是6或12或216、18【解析】三角形的重心是三条中线的交点,根据中线的性质,SACD=SBCD;再利用勾股定理逆定理证明BGCE,从而得出BCD的高,可求BCD的面积【详解】点G是ABC的重心, GB=3,EG=GC=4,BE=GA=5,即BGCE,CD为ABC的中线, 故答案为:18.【点睛】考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.三、解答题(共8题,共72分)17、骑共享单车从家到单位上班花费的时间是1分钟【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得: 解得x=1经检验,x=1是原方程的解,且符合题意答:骑共享单车从家到单位上班花费的时间是1分钟18、(1);(2)【解析】(1)根据待定系数法即可求解;(2)根据题意知,根据三角形面积公式列方程即可求解【详解】(1)根据题意得:,解得:,抛物线的表达式为:;(2)抛物线与抛物线关于直线对称,抛物线的对称轴为直线抛物线的对称轴为直线,抛物线与轴交于点两点且点在点左侧,的横坐标为:,令,则,解得:,令,则,点的坐标分别为,点的坐标为,,,即,解得:或,抛物线与抛物线关于直线对称,抛物线的对称轴为直线,抛物线的表达式为或【点睛】本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线19、证明见试题解析【解析】试题分析:首先根据ACD=BCE得出ACB=DCE,结合已知条件利用SAS判定ABC和DEC全等,从而得出答案.试题解析:ACD=BCE ACB=DCE 又AC=DC BC=EC ABCDEC A=D考点:三角形全等的证明20、原计划每天种树40棵【解析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.21、(1)y=x2+2x3;(2)点P坐标为(1,2);(3)点M坐标为(1,3)或(1,2)【解析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1)由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C坐标,连接BC,与对称轴交点即为所求点P,再求得直线BC解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到EDO为等腰三角直角三角形,从而可得到MDO=BOD=135°,故此当或时,以M、O、D为顶点的三角形与BOD相似由比例式可求得MD的长,于是可求得点M的坐标【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x1),由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,平移后抛物线的二次项系数与原抛物线的二次项系数相同,平移后抛物线的二次项系数为1,即a=1,平移后抛物线的表达式为y=(x+3)(x1),整理得:y=x2+2x3;(2)y=x2+2x3=(x+1)24,抛物线对称轴为直线x=1,与y轴的交点C(0,3),则点C关于直线x=1的对称点C(2,3),如图1,连接B,C,与直线x=1的交点即为所求点P,由B(1,0),C(2,3)可得直线BC解析式为y=x1,则,解得,所以点P坐标为(1,2);(3)如图2,由得,即D(1,1),则DE=OD=1,DOE为等腰直角三角形,DOE=ODE=45°,BOD=135°,OD=,BO=1,BD=,BOD=135°,点M只能在点D上方,BOD=ODM=135°,当或时,以M、O、D为顶点的三角形BOD相似,若,则,解得DM=2,此时点M坐标为(1,3);若,则,解得DM=1,此时点M坐标为(1,2);综上,点M坐标为(1,3)或(1,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得ODM=BOD=135°是解题的关键22、(1)111,51;(2)11.【解析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51, 经检验x=51是原方程的解, 则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得: 1.4y+×1258,解得:y11, 答:至少应安排甲队工作11天23、 (1)证明见解析;(2)1.【解析】(1)欲证明ADFACG,由可知,只要证明ADF=C即可(2)利用相似三角形的性质得到,由此即可证明【解答】(1)证明:AED=B,DAE=DAE,ADF=C,ADFACG(2)解:ADFACG,又,124、(1)直线的表达式为,双曲线的表达式为;(2);当时,的大小不发生变化,的值为;t的值为或【解析】(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案【详解】(1)直线经过点和将点代入得解得故直线的表达式为将点代入直线的表达式得解得双曲线经过点,解得故双曲线的表达式为;(2)轴,点A的坐标为点C的横坐标为12将其代入双曲线的表达式得C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式得:由勾股定理得,即解得因此,在范围内,点D与点A不重合,且在点A左侧如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK由(1)知,直线AB的表达式为令得,则,即点K为CD的中点,(直角三角形中,斜边上的中线等于斜边的一半)同理可得:A、D、B、C四点共圆,点K为圆心(圆周角定理);过点B作于M由题意和可知,点D在点A左侧,与点M重合是一个临界位置此时,四边形ACBD是矩形,则,即因此,分以下2种情况讨论:如图2,当时,过点C作于N又,即由勾股定理得即解得或(不符题设,舍去)当时,同理可得:解得或(不符题设,舍去)综上所述,t的值为或【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题