湖北省恩施2022-2023学年中考试题猜想数学试卷含解析.doc
-
资源ID:88307896
资源大小:483KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北省恩施2022-2023学年中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是12如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习3下列计算正确的是()Aa6÷a2=a3B(2)1=2C(3x2)2x3=6x6D(3)0=14下列解方程去分母正确的是( )A由,得2x133xB由,得2x2x4C由,得2y-15=3yD由,得3(y+1)2y+65如果m的倒数是1,那么m2018等于()A1B1C2018D20186若关于x的一元二次方程ax2+2x5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )Aa3 Ba3 Ca3 Da37已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰ABC的底边长和腰长,则ABC的周长为( )A13B11或13C11D128下列由左边到右边的变形,属于因式分解的是()A(x1)(x1)x21Bx22x1x(x2)1Ca2b2(ab)(ab)Dmxmynxnym(xy)n(xy)9某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035×106B50.35×105C5.035×106D5.035×10510将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是( )ABCD11如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD12方程x24x+50根的情况是()A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分)13一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角_。14如图,在ABC中,ABAC,A36°, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 15如图,已知直线y=x+4与双曲线y=(x0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_16如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D当ODA是等边三角形时,这两个二次函数的最大值之和等于_17若m22m1=0,则代数式2m24m+3的值为 18已知抛物线 的部分图象如图所示,根据函数图象可知,当 y0 时,x 的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)计算:(1)0|2|+;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EFDE,交BC的延长线于点F,求F的度数20(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了_名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为_;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.21(6分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图(1)这次调查的市民人数为_人,m_,n_;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度22(8分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整)下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由23(8分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球) ;试估算盒子里黑、白两种颜色的球各有多少只?24(10分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(3,n)两点求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b的解集;过点B作BCx轴,垂足为C,求SABC25(10分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F 求证:ABECAD;求BFD的度数.26(12分)观察下列等式:1×5+4=32;2×6+4=42;3×7+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立27(12分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)÷6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A2、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.3、D【解析】解:Aa6÷a2=a4,故A错误;B(2)1=,故B错误;C(3x2)2x3=6x5,故C错;D(3)0=1,故D正确故选D4、D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可【详解】A由,得:2x633x,此选项错误;B由,得:2x4x4,此选项错误;C由,得:5y153y,此选项错误;D由,得:3( y+1)2y+6,此选项正确故选D【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号5、A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.6、B【解析】试题分析:当x=0时,y=5;当x=1时,y=a1,函数与x轴在0和1之间有一个交点,则a10,解得:a1考点:一元二次方程与函数7、B【解析】试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,ABC的周长为11或1故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质8、C【解析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.9、A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×106,故选A考点:科学记数法表示较小的数10、D【解析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【详解】由题意得,a=-.设旋转180°以后的顶点为(x,y),则x=2×0-(-2)=2,y=2×3-5=1,旋转180°以后的顶点为(2,1),旋转180°以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.11、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图12、D【解析】解: a=1,b=4,c=5,=b24ac=(4)24×1×5=40,所以原方程没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分)13、288°【解析】母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】解:如图所示,在RtSOA中,SO=9,SA=15;则: 设侧面属开图扇形的国心角度数为n,则由 得n=288°故答案为:288°.【点睛】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.14、【解析】试题分析:因为ABC中,ABAC,A36°所以ABC=ACB=72°因为BD平分ABC交AC于点D所以ABD=CBD=36°=A因为DE平分BDC交BC于点E所以CDE=BDE=36°=A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,15、-3【解析】设A(a, a+4),B(c, c+4),则解得: x+4=,即x2+4xk=0,直线y=x+4与双曲线y=相交于A、B两点,a+c=4,ac=-k,(ca)2=(c+a)24ac=16+4k,AB=,由勾股定理得:(ca)2+c+4(a+4)2=()2,2 (ca)2=8,(ca)2=4,16+4k =4,解得:k=3,故答案为3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.16、2【解析】连接PB、PC,根据二次函数的对称性可知OBPB,PCAC,从而判断出POB和ACP是等边三角形,再根据等边三角形的性质求解即可【详解】解:如图,连接PB、PC,由二次函数的性质,OBPB,PCAC,ODA是等边三角形,AODOAD60°,POB和ACP是等边三角形,A(4,0),OA4,点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×2,即两个二次函数的最大值之和等于2故答案为2【点睛】本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键17、1【解析】试题分析:先求出m22m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解解:由m22m1=0得m22m=1,所以,2m24m+3=2(m22m)+3=2×1+3=1故答案为1考点:代数式求值18、【解析】根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案【详解】解:根据二次函数图象可知:抛物线的对称轴为直线,与x轴的一个交点为(-1,0),抛物线与x轴的另一个交点为(3,0),结合图象可知,当 y0 时,即x轴上方的图象,对应的x 的取值范围是,故答案为: 【点睛】本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1+3;(2)30°【解析】(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;(2)根据平行线的性质可得EDC=B=,根据三角形内角和定理即可求解;【详解】解:(1)原式=12+3=1+3;(2)ABC是等边三角形,B=60°,点D,E分别是边BC,AC的中点,DEAB,EDC=B=60°,EFDE,DEF=90°,F=90°EDC=30°【点睛】(1) 主要考查零指数幂、 绝对值、 二次根式的性质;(2)考查平行线的性质和三角形内角和定理.20、(1)100,108°;(2)答案见解析;(3)600人.【解析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:,QQ的扇形圆心角的度数为:360°×=108°. (2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%.该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,156%12%=32%,(2)对“社会主义核心价值观”达到“A非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A非常了解”的程度22、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题【详解】(1)服装项目的权数是:120%30%40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,80.578.5,李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键23、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.24、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)3x0或x2;(3)1【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)点A(2,3)在y=的图象上,m=6,反比例函数的解析式为:y=,n=2,A(2,3),B(3,2)两点在y=kx+b上,解得:,一次函数的解析式为:y=x+1;(2)由图象可知3x0或x2;(3)以BC为底,则BC边上的高为3+2=1,SABC=×2×1=125、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明ABECAD;(2)由三角形全等可以得出ABE=CAD,由外角与内角的关系就可以得出结论试题解析:(1)ABC为等边三角形,AB=BC=AC,ABC=ACB=BAC=60°在ABE和CAD中,AB=CA, BAC=C,AE =CD, ABECAD(SAS),(2)ABECAD,ABE=CAD,BAD+CAD=60°,BAD+EBA=60°,BFD=ABE+BAD,BFD=60°26、6×10+4=82 48×52+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:n×(n+4)+4=n2+4n+4=(n+2)2,n×(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法27、5.7米【解析】试题分析:由题意,过点A作AHCD于H在RtACH中,可求出CH,进而CD=CH+HD=CH+AB,再在RtCED中,求出CE的长试题解析:解:如答图,过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH=30°,AB=DH=1.5,BD=AH=6.在RtACH中,CH=AHtanCAH=6tan30°=6×,DH=1.5,CD=+1.5.在RtCDE中,CED=60°,CE=(米).答:拉线CE的长约为5.7米考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质