河南省郑州市外国语中学2023年中考数学考试模拟冲刺卷含解析.doc
-
资源ID:88308055
资源大小:648.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河南省郑州市外国语中学2023年中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)10.2的相反数是()A0.2B±0.2C0.2D22在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )AB或CD或3如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(3,1)、C(0,1),若将ABC绕点C沿顺时针方向旋转90°后得到A1B1C,则点B对应点B1的坐标是()A(3,1)B(2,2)C(1,3)D(3,0)4已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()Aa13,b=13 Ba13,b13 Ca13,b13 Da13,b=135人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A0.86×104B8.6×102C8.6×103D86×10263点40分,时钟的时针与分针的夹角为()A140°B130°C120°D110°7计算4×(9)的结果等于A32B32C36D368如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1y2时()A1xlB0x1或x1C1xI且x0D1x0或x19在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分BAC的是( ) A图2B图1与图2C图1与图3D图2与图310小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()ABCD11计算-5+1的结果为( )A-6B-4C4D612如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个二、填空题:(本大题共6个小题,每小题4分,共24分)13数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了海岛算经九题古证(以上材料来源于古证复原的原则吴文俊与中国数学和古代世界数学泰斗刘徽)请根据上图完成这个推论的证明过程证明:S矩形NFGDSADC(SANFSFGC),S矩形EBMFSABC(_)易知,SADCSABC,_,_可得S矩形NFGDS矩形EBMF.14函数中,自变量x的取值范围是 15如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_16如图,在每个小正方形的边长为1的网格中,A,B为格点()AB的长等于_()请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且ABC的面积等于,并简要说明点C的位置是如何找到的_17如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_18如图,已知AB是O的直径,点C在O上,过点C的切线与AB的延长线交于点P,连接AC,若A=30°,PC=3,则BP的长为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角ECA=30°,旗杆底部B的俯角ECB=45°,求旗杆AB的髙20(6分)如图,已知点A,C在EF上,ADBC,DEBF,AECF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AECF除外)21(6分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF求证:AF=CE22(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度(测角仪高度忽略不计)23(8分)已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_24(10分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型313元2.3元/公里纯电动型38元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程25(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60°,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长26(12分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由27(12分)解不等式:1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.2、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k3、B【解析】作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得A1B1C,即可得到点B对应点B1的坐标【详解】解:如图所示,A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2)故选:B【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标4、A【解析】试题解析:原来的平均数是13岁,13×23=299(岁),正确的平均数a=12.9713,原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,b=13;故选A考点:1.平均数;2.中位数.5、C【解析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂【详解】数据8 600用科学记数法表示为8.6×103故选C【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零)6、B【解析】根据时针与分针相距的份数乘以每份的度数,可得答案【详解】解:3点40分时针与分针相距4+=份,30°×=130,故选B【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键7、D【解析】根据有理数的乘法法则进行计算即可.【详解】 故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.8、B【解析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1)由图象可以直接写出当y1<y2时所对应的x的取值范围【详解】根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,1),当y1<y2时,, 0<x<1或x-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.9、C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,BAC为公共角,AMNAEF,3=4,AM=AE,AN=AF,MF=EN,又MDF=EDN,FDMNDE,DM=DE,又AD是公共边,ADMADE,1=2,即AD平分BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.10、A【解析】密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),当他忘记了末位数字时,要一次能打开的概率是.故选A.11、B【解析】根据有理数的加法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法12、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45°,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90°ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(180°45°)=67.5°,CED=180°45°67.5°=67.5°,AED=CED,故正确;AHB=(180°45°)=67.5°,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=90°67.5°=22.5°,ODH=67.5°45°=22.5°,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=90°67.5°=22.5°,EBH=OHD,又BE=DH,AEB=HDF=45°BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45°,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、SAEF SFMC SANF SAEF SFGC SFMC 【解析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论【详解】S矩形NFGD=SADC-(SANF+SFGC),S矩形EBMF=SABC-( SANF+SFCM)易知,SADC=SABC,SANF=SAEF,SFGC=SFMC,可得S矩形NFGD=S矩形EBMF故答案分别为 SAEF,SFCM,SANF,SAEF,SFGC,SFMC【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型14、且.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.15、1:1【解析】根据矩形性质得出AD=BC,ADBC,D=90°,求出四边形HFCD是矩形,得出HFG的面积是CD×DH=S矩形HFCD,推出SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,即可得出答案【详解】连接HF,四边形ABCD为矩形,AD=BC,ADBC,D=90°H、F分别为AD、BC边的中点,DH=CF,DHCF,D=90°,四边形HFCD是矩形,HFG的面积是CD×DH=S矩形HFCD,即SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,故答案为1:1【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力16、 取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求 【解析】()利用勾股定理计算即可;()取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【详解】解:()AB= =,故答案为()如图取格点P、N(使得SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求故答案为:取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【点睛】本题考查作图应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型17、1【解析】根据立体图形画出它的主视图,再求出面积即可【详解】主视图如图所示,主视图是由1个棱长均为1的正方体组成的几何体,主视图的面积为1×12=1.故答案为:1【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图18、【解析】试题分析:连接OC,已知OA=OC,A=30°,所以OCA=A=30°,由三角形外角的性质可得COB=A+ACO=60°,又因PC是O切线,可得PCO=90°,P=30°,再由PC=3,根据锐角三角函数可得OC=PCtan30°=,PC=2OC=2,即可得PB=POOB=.考点:切线的性质;锐角三角函数三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (8+8)m【解析】利用ECA的正切值可求得AE;利用ECB的正切值可求得BE,由AB=AE+BE可得答案【详解】在RtEBC中,有BE=EC×tan45°=8m,在RtAEC中,有AE=EC×tan30°=8m,AB=8+8(m)【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形20、(1)见解析;(2)ADBC,ECAF,EDBF,ABDC.【解析】整体分析:(1)用ASA证明ADECBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据ADECBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:ADBC,DEBF,EF,DACBCA,DAEBCF.在ADE和CBF中,ADECBF,ADBC,四边形ABCD是平行四边形(2)ADBC,ECAF,EDBF,ABDC.理由如下:ADECBF,ADBC,EDBF.AECF,ECAF.四边形ABCD是平行四边形,ABDC.21、证明见解析.【解析】试题分析:根据矩形的性质得出求出根据平行四边形的判定得出四边形是平行四边形,即可得出答案.试题解析:四边形ABCD是矩形, 四边形是平行四边形, 点睛:平行四边形的判定:有一组对边平行且相等的四边形是平行四边形.22、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30°,ACD45°,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键23、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=11【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质24、8.2 km【解析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解【详解】解:设小明家到单位的路程是x千米依题意,得13+2.3(x3)=8+2(x3)+0.8x解得:x=8.2答:小明家到单位的路程是8.2千米【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键25、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90°,B=DCE=30°,DAC=CDE=20°ADC是等边三角形DCA=20°DCA=CDE=20°DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90°,B =30°AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°-90°=90°,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20°,F1DBE,F1F1D=ABC=20°,BF1=DF1,F1BD=ABC=30°,F1DB=90°,F1DF1=ABC=20°,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20°,点D是角平分线上一点,DBC=DCB=×20°=30°,BG=BC=,BD=3CDF1=180°-BCD=180°-30°=150°,CDF1=320°-150°-20°=150°,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20°,点D是角平分线上一点,DEAB,DBC=BDE=ABD=×20°=30°,又BD=3,BE=×3÷cos30°=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或226、(1)抛物线解析式为y=x2+2x+6;(2)当t=3时,PAB的面积有最大值;(3)点P(4,6)【解析】(1)利用待定系数法进行求解即可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,t2+2t+6),则N(t,t+6),由SPAB=SPAN+SPBN=PNAG+PNBM=PNOB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45°,结合DPE=90°知若PDE为等腰直角三角形,则EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案【详解】(1)抛物线过点B(6,0)、C(2,0),设抛物线解析式为y=a(x6)(x+2),将点A(0,6)代入,得:12a=6,解得:a=,所以抛物线解析式为y=(x6)(x+2)=x2+2x+6;(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=x+6,设P(t,t2+2t+6)其中0t6,则N(t,t+6),PN=PMMN=t2+2t+6(t+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+SPBN=PNAG+PNBM=PN(AG+BM)=PNOB=×(t2+3t)×6=t2+9t=(t3)2+,当t=3时,PAB的面积有最大值;(3)PDE为等腰直角三角形,则PE=PD,点P(m,-m2+2m+6),函数的对称轴为:x=2,则点E的横坐标为:4-m,则PE=|2m-4|,即-m2+2m+6+m-6=|2m-4|,解得:m=4或-2或5+或5-(舍去-2和5+)故点P的坐标为:(4,6)或(5-,3-5)【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.27、x【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得【详解】2(23x)3(x1)6,46x3x+36,6x3x643,9x1,x【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变