浙江省宁波市江北区2023届初中数学毕业考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若x2y+10,则2x÷4y×8等于()A1B4C8D162如图,等腰直角三角形纸片ABC中,C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()CDE=DFB;BDCE;BC=CD;DCE与BDF的周长相等A1个B2个C3个D4个3如图,平面直角坐标系中,矩形ABCD的边AB:BC3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y的图象经过点D,则k值为()A14B14C7D74甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示根据图象信息,下列说法不正确的是( )A甲的速度是10km/hB乙的速度是20km/hC乙出发h后与甲相遇D甲比乙晚到B地2h5下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)2÷2x2=2x46如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2B1:3C1:4D1:17如图,半径为的中,弦,所对的圆心角分别是,若,则弦的长等于( )ABCD8已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y29向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是()ABCD10小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A91,88B85,88C85,85D85,84.5二、填空题(共7小题,每小题3分,满分21分)11已知:如图,矩形ABCD中,AB5,BC3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_12下列对于随机事件的概率的描述:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是0.2;测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有_(只填写序号)13计算:2111,2213,2317,24115,25131,归纳各计算结果中的个位数字规律,猜测220191的个位数字是_14有下列各式:;其中,计算结果为分式的是_(填序号)15将点P(1,3)绕原点顺时针旋转180°后坐标变为_16如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM若BAD=120°,AE=2,则DM=_17已知抛物线与直线在之间有且只有一个公共点,则的取值范围是_三、解答题(共7小题,满分69分)18(10分)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E求证:DE是O的切线;若DE=6cm,AE=3cm,求O的半径19(5分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确”请回答:小楠的作图依据是_20(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表组别分数段频次频率A60x70170.17B 70x80 30 aC 80x90 b 0.45D 90x100 8 0.08请根据所给信息,解答以下问题:表中a=_,b=_;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率21(10分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 78 99 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级初一1236初二011018(说明:成绩90分及以上为优秀,8090分为良好,6080分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).22(10分)先化简,再在1,2,3中选取一个适当的数代入求值23(12分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BGHG,CHAH,求塔杆CH的高(参考数据:tan55°1.4,tan35°0.7,sin55°0.8,sin35°0.6)24(14分)计算:(1)12018+|2|+2cos30°;(2)(a+1)2+(1a)(a+1);参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可【详解】原式2x÷22y×23,2x2y+3,22,1故选:B【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键2、D【解析】等腰直角三角形纸片ABC中,C=90°,A=B=45°,由折叠可得,EDF=A=45°,CDE+BDF=135°,DFB+B=135°,CDE=DFB,故正确;由折叠可得,DE=AE=3,CD=,BD=BCDC=41,BDCE,故正确;BC=4,CD=4,BC=CD,故正确;AC=BC=4,C=90°,AB=4,DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(42)=4+2,DCE与BDF的周长相等,故正确;故选D点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3、B【解析】过点D作DFx轴于点F,则AOB=DFA=90°,OAB+ABO=90°,四边形ABCD是矩形,BAD=90°,AD=BC,OAB+DAF=90°,ABO=DAF,AOBDFA,OA:DF=OB:AF=AB:AD,AB:BC=3:2,点A(3,0),B(0,6),AB:AD=3:2,OA=3,OB=6,DF=2,AF=4,OF=OA+AF=7,点D的坐标为:(7,2),k,故选B.4、B【解析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h故选B5、D【解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.6、B【解析】根据中位线定理得到DEBC,DE=BC,从而判定ADEABC,然后利用相似三角形的性质求解.【详解】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=1:4,ADE的面积:四边形BCED的面积=1:3;故选B【点睛】本题考查三角形中位线定理及相似三角形的判定与性质7、A【解析】作AHBC于H,作直径CF,连结BF,先利用等角的补角相等得到DAE=BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AHBC,根据垂径定理得CH=BH,易得AH为CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解解:作AHBC于H,作直径CF,连结BF,如图,BAC+EAD=120°,而BAC+BAF=120°,DAE=BAF,弧DE弧BF,DE=BF=6,AHBC,CH=BH,CA=AF,AH为CBF的中位线,AH=BF=1,BC2BH2故选A“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半也考查了垂径定理和三角形中位线性质8、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.9、D【解析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【点睛】本题主要考查函数模型及其应用.10、D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据矩形的性质得到CD=AB=5,AD=BC=3,D=C=90°,根据折叠得到BFAB5,EFEA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】矩形ABCD中,AB5,BC3,CD=AB=5,AD=BC=3,D=C=90°,由折叠的性质可知,BFAB5,EFEA,在RtBCF中,CF4, DFDCCF1,设AEx,则EFx,DE3x,在RtDEF中,EF2DE2+DF2,即x2(3x)2+12,解得,x,故答案为:【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.12、【解析】大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.根据事件的类型及概率的意义找到正确选项即可.【详解】解:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是,此结论正确;测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:【点睛】本题考查了概率的意义,解题的关键在于掌握计算公式.13、1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解【详解】由给出的这组数2111,2213,2311,24115,25131,个位数字1,3,1,5循环出现,四个一组,2019÷45043,220191的个位数是1故答案为1【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键14、【解析】根据分式的定义,将每个式子计算后,即可求解.【详解】=1不是分式,=,=3不是分式,=故选.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.15、(1,3)【解析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P的位置,再根据平面直角坐标系写出坐标即可【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P的坐标为(1,-3)故答案是:(1,-3)【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观16、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30°,AM=1,RtAMN中,AMN=30°, AD=AB=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半17、或【解析】联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当时,求出此时m的值;当时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;【详解】联立可得:,令,抛物线与直线在之间有且只有一个公共点,即的图象在上与x轴只有一个交点,当时,即解得:,当时,当时,满足题意,当时,令,令,令代入解得:,此方程的另外一个根为:,故也满足题意,故的取值范围为:或故答案为: 或.【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键三、解答题(共7小题,满分69分)18、解:(1)证明见解析;(2)O的半径是7.5cm【解析】(1)连接OD,根据平行线的判断方法与性质可得ODE=DEM=90°,且D在O上,故DE是O的切线(2)由直角三角形的特殊性质,可得AD的长,又有ACDADE根据相似三角形的性质列出比例式,代入数据即可求得圆的半径【详解】(1)证明:连接ODOA=OD,OAD=ODAOAD=DAE,ODA=DAEDOMNDEMN,ODE=DEM=90°即ODDED在O上,OD为O的半径,DE是O的切线(2)解:AED=90°,DE=6,AE=3,连接CDAC是O的直径,ADC=AED=90°CAD=DAE,ACDADE则AC=15(cm)O的半径是7.5cm考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质19、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【解析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定和性质20、(1)0.3 ,45;(2)108°;(3)【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=0.3,b=100×0.45=45(人)故答案为0.3,45;(2)360°×0.3=108°答:扇形统计图中B组对应扇形的圆心角为108°(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,甲、乙两名同学都被选中的概率为=【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好【解析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答【详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10x19的有:11 19 19 11 19 19 17 11,共1个故答案为:1分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2故答案为:19,2(2)初一年级掌握生态环保知识水平较好因为两个年级的平均数相差不大,但是初一年级同学的中位数是115,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好【点睛】本题考查了频数(率)分布表,众数、中位数以及平均数掌握众数、中位数以及平均数的定义是解题的关键22、,当x=2时,原式=.【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可试题解析:原式=当x=2时,原式=.23、1米【解析】试题分析:作BEDH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtanCAH=tan55°x知CE=CHEH=tan55°x10,根据BE=DE可得关于x的方程,解之可得试题解析:解:如图,作BEDH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在RtACH中,CH=AHtanCAH=tan55°x,CE=CHEH=tan55°x10,DBE=45°,BE=DE=CE+DC,即43+x=tan55°x10+35,解得:x45,CH=tan55°x=1.4×45=1答:塔杆CH的高为1米点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形24、 (1)1;(2)2a+2【解析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案【详解】解:(1)原式=1+2+2×=1;(2)原式=a2+2a+1+1a2=2a+2.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型