欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    河南省驻马店市确山县重点中学2023届中考猜题数学试卷含解析.doc

    • 资源ID:88308454       资源大小:954.50KB        全文页数:21页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    河南省驻马店市确山县重点中学2023届中考猜题数学试卷含解析.doc

    2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列几何体中,主视图和俯视图都为矩形的是(   )ABCD2某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )ABCD3下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a54“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()Ax(x+1)210Bx(x1)210C2x(x1)210Dx(x1)2105如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D106已知,且,则的值为( )A2或12B2或C或12D或7如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()ABC50D508能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da9某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同设每个笔记本的价格为x元,则下列所列方程正确的是()ABCD10已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()ABCD1123的相反数是()A8B8C6D612下列计算正确的是()Aa3a2a6B(a3)2a5C(ab2)3ab6Da+2a3a二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直角ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_14等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_秒15如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,CFEF,则正方形ABCD的边长为_16如图,在ABC中,ABACD,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:_,可以使得FDB与ADE相似.(只需写出一个) 17如图,已知ABCD,F为CD上一点,EFD=60°,AEC=2CEF,若6°BAE15°,C的度数为整数,则C的度数为_18如图,已知l1l2l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sin的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,在半径是4的O中,AB、CD是两条直径,M是OB的中点,CM的延长线交O于点E,且EMMC,连接DE,DE=(1)求证:AMCEMB;(2)求EM的长;(3)求sinEOB的值20(6分)如图(1),P 为ABC 所在平面上一点,且APB=BPC=CPA=120°,则点 P 叫做ABC 的费马点(1)如果点 P 为锐角ABC 的费马点,且ABC=60°求证:ABPBCP;若 PA=3,PC=4,则 PB= (2)已知锐角ABC,分别以 AB、AC 为边向外作正ABE 和正ACD,CE 和 BD相交于 P 点如图(2)求CPD 的度数;求证:P 点为ABC 的费马点21(6分)如图,梯形ABCD中,ADBC,DCBC,且B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45°交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长22(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取 名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率23(8分)如图,AB是O的直径,弦CDAB,垂足为H,连结AC,过上一点E作EGAC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE(1)求证:G=CEF;(2)求证:EG是O的切线;(3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值24(10分)解不等式组: ,并写出它的所有整数解25(10分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC(1)求证:四边形ABCD是矩形;(1)若GEF的面积为1求四边形BCFE的面积;四边形ABCD的面积为 26(12分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程27(12分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB(1)求一次函数y=kx+b和y=的表达式;(2)已知点C在x轴上,且ABC的面积是8,求此时点C的坐标;(3)反比例函数y=(1x4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_(直接写出答案)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.2、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码),故答案选A.考点:概率.3、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键4、B【解析】设全组共有x名同学,那么每名同学送出的图书是(x1)本;则总共送出的图书为x(x1);又知实际互赠了210本图书,则x(x1)=210.故选:B.5、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=×()2=9,圆锥的侧面积=×5××6=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图6、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.7、A【解析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解【详解】解:圆锥的侧面积=55=故选A【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.9、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可考点:由实际问题抽象出分式方程10、B【解析】2a=3b, , ,A、C、D选项错误,B选项正确,故选B.11、B【解析】=8,8的相反数是8,的相反数是8,故选B12、D【解析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案【详解】解:Ax4x4=x4+4=x8x16,故该选项错误;B(a3)2=a3×2=a6a5,故该选项错误;C(ab2)3=a3b6ab6,故该选项错误;Da+2a=(1+2)a=3a,故该选项正确;故选D考点:1同底数幂的乘法;2积的乘方与幂的乘方;3合并同类项二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=1故答案为1点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变14、7秒或25秒【解析】考点:勾股定理;等腰三角形的性质专题:动点型;分类讨论分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:PAACPAAB,从而可得到运动的时间解答:解:如图,作ADBC,交BC于点D,BC=8cm,BD=CD=BC=4cm,AD=3,分两种情况:当点P运动t秒后有PAAC时,AP2=PD2+AD2=PC2-AC2,PD2+AD2=PC2-AC2,PD2+32=(PD+4)2-52PD=2.25,BP=4-2.25=1.75=0.25t,t=7秒,当点P运动t秒后有PAAB时,同理可证得PD=2.25,BP=4+2.25=6.25=0.25t,t=25秒,点P运动的时间为7秒或25秒点评:本题利用了等腰三角形的性质和勾股定理求解15、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90°,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用16、或【解析】因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:A=BDF,或者C=BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.17、36°或37°【解析】分析:先过E作EGAB,根据平行线的性质可得AEF=BAE+DFE,再设CEF=x,则AEC=2x,根据6°BAE15°,即可得到6°3x-60°15°,解得22°x25°,进而得到C的度数详解:如图,过E作EGAB,ABCD,GECD,BAE=AEG,DFE=GEF,AEF=BAE+DFE,设CEF=x,则AEC=2x,x+2x=BAE+60°,BAE=3x-60°,又6°BAE15°,6°3x-60°15°,解得22°x25°,又DFE是CEF的外角,C的度数为整数,C=60°-23°=37°或C=60°-24°=36°,故答案为:36°或37°点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等18、【解析】过点A作ADl1于D,过点B作BEl1于E,根据同角的余角相等求出CAD=BCE,然后利用“角角边”证明ACD和CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解【详解】如图,过点A作ADl1于D,过点B作BEl1于E,设l1,l2,l3间的距离为1,CAD+ACD=90°,BCE+ACD=90°,CAD=BCE,在等腰直角ABC中,AC=BC,在ACD和CBE中,ACDCBE(AAS),CD=BE=1,AD=2,AC=,AB=AC=,sin=,故答案为.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)EM=4;(3)sinEOB=【解析】(1)连接A、C,E、B点,那么只需要求出AMC和EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得AMCEMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EFAB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出RtEOF各边的长度,根据锐角三角函数的定义,便可求得sinEOB的值【详解】(1)证明:连接AC、EB,如图1,A=BEC,B=ACM,AMCEMB;(2)解:DC是O的直径,DEC=90°,DE2+EC2=DC2,DE=,CD=8,且EC为正数,EC=7,M为OB的中点,BM=2,AM=6,AMBM=EMCM=EM(ECEM)=EM(7EM)=12,且EMMC,EM=4;(3)解:过点E作EFAB,垂足为点F,如图2,OE=4,EM=4,OE=EM,OF=FM=1,EF=,sinEOB=【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.20、(1)证明见解析;(2)60°;证明见解析;【解析】试题分析:(1)根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到1=2,再由对顶角相等,得到5=6,即可求出所求角度数;由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到APF为60°,由APD+DPC,求出APC为120°,进而确定出APB与BPC都为120°,即可得证试题解析:(1)证明:PAB+PBA=180°APB=60°,PBC+PBA=ABC=60°,PAB=PBC,又APB=BPC=120°,ABPBCP,解:ABPBCP,PB2=PAPC=12,PB=2;(2)解:ABE与ACD都为等边三角形,BAE=CAD=60°,AE=AB,AC=AD,BAE+BAC=CAD+BAC,即EAC=BAD,在ACE和ABD中,ACEABD(SAS),1=2,3=4,CPD=6=5=60°;证明:ADFCFP,AFPF=DFCF,AFP=CFD,AFPCDFAPF=ACD=60°,APC=CPD+APF=120°,BPC=120°,APB=360°BPCAPC=120°,P点为ABC的费马点考点:相似形综合题21、 (1) CF=1;(2)y=,0x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推出AE2=EMEB,由此构建函数关系式即可解决问题;(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90°,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45°,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+y)(y+2),y=,22x0,0x1(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=B=45°,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90°,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明EAMEBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.22、(1)1;(2)详见解析;(3)750;(4)【解析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人)答:共抽取1名学生进行问卷调查;故答案为1(2)足球的人数为:160302436=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°如图所示:(3)3000×0.25=750(人)答:全校学生喜欢足球运动的人数为750人(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确23、(1)证明见解析;(2)证明见解析;(3). 【解析】试题分析:(1)由ACEG,推出G=ACG,由ABCD推出,推出CEF=ACD,推出G=CEF,由此即可证明;(2)欲证明EG是O的切线只要证明EGOE即可;(3)连接OC设O的半径为r在RtOCH中,利用勾股定理求出r,证明AHCMEO,可得,由此即可解决问题;试题解析:(1)证明:如图1ACEG,G=ACG,ABCD,CEF=ACD,G=CEF,ECF=ECG,ECFGCE(2)证明:如图2中,连接OEGF=GE,GFE=GEF=AFH,OA=OE,OAE=OEA,AFH+FAH=90°,GEF+AEO=90°,GEO=90°,GEOE,EG是O的切线(3)解:如图3中,连接OC设O的半径为r在RtAHC中,tanACH=tanG=,AH=,HC=,在RtHOC中,OC=r,OH=r,HC=,r=,GMAC,CAH=M,OEM=AHC,AHCMEO,EM=点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题24、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,225、(1)证明见解析;(1)16;14;【解析】(1)根据平行四边形的性质得到ADBC,AB=DC,ABCD于是得到BE=CF,根据全等三角形的性质得到A=D,根据平行线的性质得到A+D=180°,由矩形的判定定理即可得到结论;(1)根据相似三角形的性质得到,求得GBC的面积为18,于是得到四边形BCFE的面积为16;根据四边形BCFE的面积为16,列方程得到BCAB=14,即可得到结论【详解】(1)证明:GB=GC,GBC=GCB,在平行四边形ABCD中,ADBC,AB=DC,ABCD,GB-GE=GC-GF,BE=CF,在ABE与DCF中,ABEDCF,A=D,ABCD,A+D=180°,A=D=90°,四边形ABCD是矩形;(1)EFBC,GFEGBC,EF=AD,EF=BC,GEF的面积为1,GBC的面积为18,四边形BCFE的面积为16,;四边形BCFE的面积为16,(EF+BC)AB=×BCAB=16,BCAB=14,四边形ABCD的面积为14,故答案为:14【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得GFEGBC是解题的关键26、(1)错误步骤在第步(2)x4.【解析】(1)第步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可【详解】解:(1)方程两边同乘6,得3x2(x1)6 去括号,得3x2x+26 错误步骤在第步(2)方程两边同乘6,得3x2(x1)6去括号,得3x2x+26合并同类项,得x+26解得x4原方程的解为x4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因27、(1),;(2)点C的坐标为或;(3)2.【解析】试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EMFN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S试题解析:(1)点A(4,3)在反比例函数y=的图象上,a=4×3=12,反比例函数解析式为y=;OA=1,OA=OB,点B在y轴负半轴上,点B(0,1)把点A(4,3)、B(0,1)代入y=kx+b中,得: ,解得: ,一次函数的解析式为y=2x1 (2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示令y=2x1中y=0,则x=,D(,0),SABC=CD(yAyB)=|m|×3(1)=8,解得:m=或m=故当ABC的面积是8时,点C的坐标为(,0)或(,0)(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示令y=中x=1,则y=12,E(1,12),;令y=中x=4,则y=3,F(4,3),EMFN,且EM=FN,四边形EMNF为平行四边形,S=EM(yEyF)=3×(123)=2C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积故答案为2【点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性

    注意事项

    本文(河南省驻马店市确山县重点中学2023届中考猜题数学试卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开