欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    江西省南昌市进贤县第一中学2022-2023学年高三下学期联合考试数学试题含解析.doc

    • 资源ID:88308533       资源大小:1.72MB        全文页数:18页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    江西省南昌市进贤县第一中学2022-2023学年高三下学期联合考试数学试题含解析.doc

    2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图则下列结论中表述不正确的是( )A从2000年至2016年,该地区环境基础设施投资额逐年增加;B2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.2已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD3命题“”的否定为( )ABCD4曲线上任意一点处的切线斜率的最小值为( )A3B2CD15设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件6已知抛物线经过点,焦点为,则直线的斜率为( )ABCD7( )ABCD8已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )A2或B3或C4或D5或9已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,抛物线的准线交轴于点,若,则直线的斜率为A1BCD10设全集,集合,则( )ABCD11已知数列满足:,则( )A16B25C28D3312已知ABC中,点P为BC边上的动点,则的最小值为()A2BCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,若点的横坐标为1,则点的横坐标为_.14给出以下式子:tan25°+tan35°tan25°tan35°;2(sin35°cos25°+cos35°cos65°);其中,结果为的式子的序号是_.15已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为_16集合,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为_的值可以为2;的值可以为;的值可以为;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.18(12分) 选修4-5:不等式选讲:已知函数.(1)当时,求不等式的解集;(2)设,且的最小值为.若,求的最小值.19(12分)已知函数.(1)解不等式;(2)若,求证:.20(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值21(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.22(10分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点(1)写出曲线C的一般方程;(2)求的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.2、B【解析】由题意可得c=,设右焦点为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180°知,FPO+OPF=90°,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在3、C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.4、A【解析】根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.5、C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.6、A【解析】先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.7、A【解析】分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.8、C【解析】先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.9、C【解析】根据抛物线定义,可得,又,所以,所以,设,则,则,所以,所以直线的斜率故选C10、A【解析】先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.11、C【解析】依次递推求出得解.【详解】n=1时,n=2时,n=3时,n=4时,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.12、D【解析】以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为故选D【点睛】本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】当时,得,或,依题意可得,可求得,继而可得答案【详解】因为点的横坐标为1,即当时,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,所以,故,所以函数的关系式为当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点故答案为:1【点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题14、【解析】由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.【详解】tan60°tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,2(sin35°cos25°+cos35°cos65°)2(sin35°cos25°+cos35°sin25°),2sin60°;tan(45°+15°)tan60°;故答案为:【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.15、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为 2R,则AB弦的长度大于等于半径长度的概率P=;故答案为:16、【解析】根据对称性,只需研究第一象限的情况,计算:,得到,得到答案.【详解】如图所示:根据对称性,只需研究第一象限的情况,集合:,故,即或,集合:,是平面上正八边形的顶点所构成的集合,故所在的直线的倾斜角为,故:,解得,此时,此时.故答案为:.【点睛】本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.【详解】(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,因为线段AB的中点是,设,则,且,又,作差可得,则,得又,所以,因此椭圆的方程为.(2)由(1)联立,解得或,不妨令,易知直线l的斜率存在,设直线,代入,得,解得或,设,则,则,因为到直线的距离分别是,由于直线l与线段AB(不含端点)相交,所以,即,所以,四边形的面积,令,则,所以,当,即时,,因此四边形面积的最大值为.【点睛】本题考查求椭圆的标准方程,考查椭圆中的四边形面积问题,考查直线与椭圆的位置关系的应用,考查运算能力.18、(1) (2)【解析】(1)当时,原不等式可化为,分类讨论即可求得不等式的解集;(2)由题意得,的最小值为,所以,由,得,利用基本不等式即可求解其最小值【详解】(1)当时,原不等式可化为,当时,不等式可化为,解得,此时;当时,不等式可化为,解得,此时;当时,不等式可化为,解得,此时,综上,原不等式的解集为.(2)由题意得, ,因为的最小值为,所以,由,得,所以 ,当且仅当,即,时,的最小值为.【点睛】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向19、(1);(2)证明见解析.【解析】(1)分、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,所以,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.20、(1)见解析(2),最大值【解析】(1)先证明,故平面ADC由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:四边形DCBE为平行四边形,平面ABC,平面ABC,AB是圆O的直径,且,平面ADC,平面ADC,平面ADC(2)解平面ABC,平面ABC在中,在中,当且仅当,即时取等号,当时,体积有最大值【点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.21、(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.【解析】(1)将分别乘以区间、对应的矩形面积可得出结果;(2)由题可知,随机变量的可能取值为、,利用超几何分布概率公式计算出随机变量在不同取值下的概率,可得出随机变量的分布列,并由此计算出随机变量的数学期望值.【详解】(1)由题意知,所抽取的人中得分落在组的人数有(人),得分落在组的人数有(人).因此,所抽取的人中得分落在组的人数有人,得分落在组的人数有人;(2)由题意可知,随机变量的所有可能取值为、,所以,随机变量的分布列为:所以,随机变量的期望为.【点睛】本题考查利用频率分布直方图计算频数,同时也考查了离散型随机变量分布列与数学期望的求解,考查计算能力,属于基础题.22、(1);(2)【解析】(1)将曲线的参数方程消参得到普通方程;(2)写出直线MN的参数方程,将参数方程代入曲线方程,并将其化为一个关于的一元二次方程,根据,结合韦达定理和余弦函数的性质,即可求出的最小值.【详解】(1)由曲线C的参数方程(是参数),可得,即曲线C的一般方程为(2)直线MN的参数方程为(t为参数),将直线MN的参数方程代入曲线,得,整理得,设M,N对应的对数分别为,则,当时,取得最小值为【点睛】该题考查的是有关参数方程的问题,涉及到的知识点有参数方程向普通方程的转化,直线的参数方程的应用,属于简单题目.

    注意事项

    本文(江西省南昌市进贤县第一中学2022-2023学年高三下学期联合考试数学试题含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开