江西省安远县2022-2023学年中考数学考试模拟冲刺卷含解析.doc
-
资源ID:88308548
资源大小:665.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江西省安远县2022-2023学年中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-22如图,数轴上的四个点A,B,C,D对应的数为整数,且ABBCCD1,若|a|+|b|2,则原点的位置可能是()AA或BBB或CCC或DDD或A3抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,304如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x0)与AB相交于点D,与BC相交于点E,若BD=3AD,且ODE的面积是9,则k的值是( )AB CD125下列二次根式,最简二次根式是()ABCD6下列运算正确的是()Aa3a2=a6B(x3)3=x6Cx5+x5=x10Da8÷a4=a47如图数轴的A、B、C三点所表示的数分别为a、b、c若|ab|3,|bc|5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A在A的左边B介于A、B之间C介于B、C之间D在C的右边8四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD9下列几何体是棱锥的是( )ABCD10在RtABC中,C=90°,如果sinA=,那么sinB的值是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在扇形AOB中AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当扇形AOB的半径为2时,阴影部分的面积为_12在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_13如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为_14同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组12组13组14组15组16组17组18组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为_,理由是:_.15已知二次函数的图像与轴交点的横坐标是和,且,则_16如图,反比例函数y=(x0)的图象与矩形AOBC的两边AC,BC边相交于E,F,已知OA=3,OB=4,ECF的面积为,则k的值为_三、解答题(共8题,共72分)17(8分)已知二次函数y=a(x+m)2的顶点坐标为(1,0),且过点A(2,)(1)求这个二次函数的解析式;(2)点B(2,2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案18(8分)计算:()-1+()0+-2cos30°19(8分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:若a>0,b>0,则>0;若a<0,b<0,则>0;若a>0,b<0,则<0;若a<0,b>0,则<0.反之:若>0,则 或 ,(1)若<0,则_或_.(2)根据上述规律,求不等式 >0的解集.20(8分)如图,求证:。21(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:这次统计共抽查了_名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为_;将条形统计图补充完整;该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.22(10分)在RtABC中,ACB90°,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F(1)求证:AC是O的切线;(2)若BF6,O的半径为5,求CE的长23(12分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率24如图,在ABC中,ACB=90°,点D是AB上一点,以BD为直径的O和AB相切于点P(1)求证:BP平分ABC;(2)若PC=1,AP=3,求BC的长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】解:由题意得:,x=±1故选C2、B【解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可【详解】ABBCCD1,当点A为原点时,|a|+|b|2,不合题意;当点B为原点时,|a|+|b|2,符合题意;当点C为原点时,|a|+|b|2,符合题意;当点D为原点时,|a|+|b|2,不合题意;故选:B【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值3、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握4、C【解析】设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据SODE=S矩形OCBA-SAOD-SOCE-SBDE= 9求出k.【详解】四边形OCBA是矩形,AB=OC,OA=BC,设B点的坐标为(a,b),BD=3AD,D(,b),点D,E在反比例函数的图象上,=k,E(a, ),SODE=S矩形OCBA-SAOD-SOCE-SBDE=ab- -(b-)=9,k=,故选:C【点睛】考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.5、C【解析】根据最简二次根式的定义逐个判断即可【详解】A,不是最简二次根式,故本选项不符合题意;B,不是最简二次根式,故本选项不符合题意;C是最简二次根式,故本选项符合题意;D,不是最简二次根式,故本选项不符合题意故选C【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键6、D【解析】各项计算得到结果,即可作出判断【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键7、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论解析:|ab|=3,|bc|=5,b=a+3,c=b+5,原点O与A、B的距离分别为1、1,a=±1,b=±1,b=a+3,a=1,b=1,c=b+5,c=1点O介于B、C点之间故选C点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键8、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1和1;1×1=1,故此选项正确;-1和1;-1×1=-1,故此选项错误;0和0;0×0=0,故此选项错误;和1,-×(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数9、D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.10、A【解析】RtABC中,C=90°,sinA=,cosA=,A+B=90°,sinB=cosA=故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解【详解】连接OC在扇形AOB中AOB90°,正方形CDEF的顶点C是弧AB的中点,COD45°,OCCD1 ,CDOD1,阴影部分的面积扇形BOC的面积三角形ODC的面积 ×111故答案为1【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度12、9.26×1011【解析】试题解析: 9260亿=9.26×1011故答案为: 9.26×1011点睛: 科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数13、(3,2)【解析】根据平移的性质即可得到结论【详解】将线段AB沿x轴的正方向平移,若点B的对应点B的坐标为(2,0),-1+3=2,0+3=3A(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形14、0.532, 在用频率估计概率时,试验次数越多越接近,所以取18组的频率值. 【解析】根据用频率估计概率解答即可.【详解】在用频率估计概率时,试验次数越多越接近,所以取18组的频率值,这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取18组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、12【解析】令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值【详解】解:二次函数的图像与轴交点的横坐标是和,令y=0,得方程,则和即为方程的两根,两边平方得:,即,解得:,故答案为:【点睛】本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解16、1【解析】设E(,3),F(1,),由题意(1-)(3-)= ,求出k即可;【详解】四边形OACB是矩形,OA=BC=3,AC=OB=1,设E(,3),F(1,),由题意(1-)(3-)=,整理得:k2-21k+80=0,解得k=1或20,k=20时,F点坐标(1,5),不符合题意,k=1故答案为1【点睛】本题考查了反比例函数系数k的几何意义,解题的关键是会利用参数构建方程解决问题三、解答题(共8题,共72分)17、(1)y=(x+1)1;(1)点B(1,1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可【详解】解:(1)二次函数y=a(x+m)1的顶点坐标为(1,0),m=1,二次函数y=a(x+1)1,把点A(1,)代入得a=,则抛物线的解析式为:y=(x+1)1(1)把x=1代入y=(x+1)1得y=1,所以,点B(1,1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=(x+1+m)1,把B(1,1)代入得1=(1+1+m)1,解得m=1或5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换18、4+2【解析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果【详解】原式=3+1+3-2×=4+219、(1) 或;(2)x>2或x<1.【解析】(1)根据两数相除,异号得负解答;(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可【详解】(1)若>0,则 或 ;故答案为: 或;(2)由上述规律可知,不等式转化为或,所以,x>2或x<1.【点睛】此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.20、见解析【解析】据1=2可得BAC=EAD,再加上条件AB=AE,C=D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角21、(1)100,108°;(2)答案见解析;(3)600人.【解析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:,QQ的扇形圆心角的度数为:360°×=108°. (2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%.该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据22、(1)证明见解析;(2)CE=1【解析】(1)根据等角对等边得OBE=OEB,由角平分线的定义可得OBE=EBC,从而可得OEB=EBC,根据内错角相等,两直线平行可得OEBC,根据两直线平行,同位角相等可得OEA=90°,从而可证AC是O的切线.(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在RtOBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,OB=OE,OBE=OEB, BE平分ABCOBE=EBC,OEB=EBC,OEBC, ACB=90° ,OEA=ACB=90°, AC是O的切线 .(2)解:过O作OHBF,BH=BF=3,四边形OHCE是矩形,CE=OH,在RtOBH中,BH=3,OB=5,OH=1,CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性23、(1)20;(2)作图见试题解析;(3)【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)C类女生:20×25%2=3(名);D类男生:20×(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:24、(1)证明见解析;(2) 【解析】试题分析:(1)连接OP,首先证明OPBC,推出OPB=PBC,由OP=OB,推出OPB=OBP,由此推出PBC=OBP;(2)作PHAB于H首先证明PC=PH=1,在RtAPH中,求出AH,由APHABC,求出AB、BH,由RtPBCRtPBH,推出BC=BH即可解决问题.试题解析:(1)连接OP,AC是O的切线,OPAC, APO=ACB=90°,OPBC,OPB=PBC,OP=OB,OPB=OBP,PBC=OBP,BP平分ABC;(2)作PHAB于H则AHP=BHP=ACB=90°,又PBC=OBP,PB=PB,PBCPBH ,PC=PH=1,BC=BH,在RtAPH中,AH=,在RtACB中,AC2+BC2=AB2(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得