湖南省长沙市望城县2022-2023学年中考数学考前最后一卷含解析.doc
-
资源ID:88308659
资源大小:1.23MB
全文页数:25页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省长沙市望城县2022-2023学年中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,实数3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A点MB点NC点PD点Q2下列对一元二次方程x2+x3=0根的情况的判断,正确的是()A有两个不相等实数根B有两个相等实数根C有且只有一个实数根D没有实数根3如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D124制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A360元B720元C1080元D2160元5如图,AB为O的直径,C为O上的一动点(不与A、B重合),CDAB于D,OCD的平分线交O于P,则当C在O上运动时,点P的位置()A随点C的运动而变化B不变C在使PA=OA的劣弧上D无法确定6如图,AB是O的切线,半径OA=2,OB交O于C,B=30°,则劣弧的长是()ABCD7如图,CD是O的弦,O是圆心,把O的劣弧沿着CD对折,A是对折后劣弧上的一点,CAD=100°,则B的度数是() A100°B80°C60°D50°8若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x21012y83010则抛物线的顶点坐标是()A(1,3)B(0,0)C(1,1)D(2,0)9一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确10如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变二、填空题(共7小题,每小题3分,满分21分)11如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 12如图,在矩形ABCD中,AB=2,AD=6,EF分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为_13如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为_.14分解因式:x29_ 15如图,在ACB中,ACB90°,点D为AB的中点,将ACB绕点C按顺时针方向旋转,当CB经过点D时得到A1CB1若AC6,BC8,则DB1的长为_16如图,点C在以AB为直径的半圆上,AB8,CBA30°,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 17如图,AB是圆O的直径,弦CDAB,BCD=30°,CD=4,则S阴影=_三、解答题(共7小题,满分69分)18(10分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标19(5分)某厂按用户的月需求量(件)完成一种产品的生产,其中每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据月份(月)12成本(万元/件)1112需求量(件/月)120100 (1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求20(8分)如图,二次函数yx2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6)求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由21(10分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点将ACD绕点A顺时针方向旋转,得ACD,记旋转角为(I)如图,连接BD,当BDOA时,求点D的坐标;(II)如图,当60°时,求点C的坐标;(III)当点B,D,C共线时,求点C的坐标(直接写出结果即可)22(10分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半求足球开始飞出到第一次落地时,该抛物线的表达式足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?23(12分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?24(14分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,原点在点M与N之间,这四个数中绝对值最大的数对应的点是点Q故选D2、A【解析】【分析】根据方程的系数结合根的判别式,即可得出=130,进而即可得出方程x2+x3=0有两个不相等的实数根【详解】a=1,b=1,c=3,=b24ac=124×(1)×(3)=130,方程x2+x3=0有两个不相等的实数根,故选A【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根3、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键4、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可【详解】3m×2m=6m2,长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,扩大后长方形广告牌的面积=9×6=54m2,扩大后长方形广告牌的成本是54×20=1080元,故选C【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键5、B【解析】因为CP是OCD的平分线,所以DCP=OCP,所以DCP=OPC,则CDOP,所以弧AP等于弧BP,所以PA=PB从而可得出答案【详解】解:连接OP,CP是OCD的平分线,DCP=OCP,又OC=OP,OCP=OPC,DCP=OPC,CDOP,又CDAB,OPAB,PA=PB点P是线段AB垂直平分线和圆的交点,当C在O上运动时,点P不动故选:B【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦6、C【解析】由切线的性质定理得出OAB=90°,进而求出AOB=60°,再利用弧长公式求出即可【详解】AB是O的切线,OAB=90°,半径OA=2,OB交O于C,B=30°,AOB=60°,劣弧AC的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.7、B【解析】试题分析:如图,翻折ACD,点A落在A处,可知A=A=100°,然后由圆内接四边形可知A+B=180°,解得B=80°.故选:B8、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标详解:当或时,当时, ,解得 ,二次函数解析式为,抛物线的顶点坐标为,故选C点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键9、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大10、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得 所以12、1或12【解析】当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值【详解】解:如图1所示:由翻折的性质可知PF=CF=1,ABFE为正方形,边长为2,AF=2PA=12如图2所示:由翻折的性质可知PF=FC=1ABFE为正方形,BE为AF的垂直平分线AP=PF=1故答案为:1或12【点睛】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键13、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2AF=4,AB=AF+BF=2+4=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比例函数系数k的几何意义14、 (x3)(x3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).15、2【解析】根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】在ACB中,ACB90°,AC6,BC8, 点D为AB的中点, ,将ACB绕点C按顺时针方向旋转,当CB经过点D时得到A1CB1CB1BC8,DB1CB1-CD=852, 故答案为:2【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.16、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90°,E+F=90°,CDE+CDF=90°,F=CDF,CD=CF,CE=CD=CF,结论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,ACB=90°,AB=8,CBA=30°,CAB=60°,AC=4,BC=CDAB,CBA=30°,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60°,OAC是等边三角形,CA=CO,ACO=60°,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30°,点E与点D关于AC对称,ECA=DCA,ECA=30°,ECO=90°,OCEF,EF经过半径OC的外端,且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90°,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90°,BF=BD,FBH=DBH=30°,FBD=60°,AB是半圆的直径,AFB=90°,FAB=30°,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫过的图形就是图5中阴影部分,S阴影=2SABC=2×ACBC=ACBC=4×=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质17、 【解析】根据垂径定理求得 然后由圆周角定理知DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-SDOE+SBEC【详解】如图,假设线段CD、AB交于点E,AB是O的直径,弦CDAB,又 S阴影=S扇形ODBSDOE+SBEC 故答案为:.【点睛】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)y=x2x2;(2)9;(3)Q坐标为()或(4)或(2,1)或(4+,)【解析】试题分析:把点代入抛物线,求出的值即可.先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标, 最大值=,进而计算四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)在抛物线上, 解得 抛物线的解析式为 (2)过点P作轴交AD于点G, 直线BE的解析式为 ADBE,设直线AD的解析式为 代入,可得 直线AD的解析式为 设则 则 当x=1时,PG的值最大,最大值为2,由 解得 或 最大值= ADBE, S四边形APDE最大=SADP最大+ (3)如图31中,当时,作于T 可得 如图32中,当时, 当时, 当时,Q3综上所述,满足条件点点Q坐标为或或或19、 (1),不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.试题解析:(1)由题意设,由表中数据,得解得.由题意,若,则.x0,.不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.k=13.由题意,得18=6+,求得x=50.50=,即.,方程无实数根.不存在.(3)第m个月的利润为w=;第(m+1)个月的利润为W=.若WW,W-W=48(6-m),m取最小1,W-W=240最大.若WW,W-W=48(m-6),m+112,m取最大11,W-W=240最大.m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.20、(1)y=x14x+6;(1)D点的坐标为(6,0);(3)存在当点C的坐标为(4,1)时,CBD的周长最小【解析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接CA,由于BD是定值,使得CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标【详解】(1)把A(1,0),B(8,6)代入,得解得:二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,1)令y=0,得,解得:x1=1,x1=6,D点的坐标为(6,0);(3)二次函数的对称轴上存在一点C,使得的周长最小连接CA,如图,点C在二次函数的对称轴x=4上,xC=4,CA=CD,的周长=CD+CB+BD=CA+CB+BD,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:直线AB的解析式为y=x1当x=4时,y=41=1,当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短21、(I)(10,4)或(6,4)(II)C(6,2)(III)C(8,4)C(,)【解析】(I)如图,当OBAC,四边形OBCA是平行四边形,只要证明B、C、D共线即可解决问题,再根据对称性确定D的坐标;(II)如图,当=60°时,作CKAC于K解直角三角形求出OK,CK即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图,A(8,0),B(0,4),OB=4,OA=8,AC=OC=AC=4,当OBAC,四边形OBCA是平行四边形,AOB=90°,四边形OBCA是矩形,ACB=90°,ACD=90°,B、C、D共线,BDOA,AC=CO, BD=AD,CD=CD=OB=2,D(10,4),根据对称性可知,点D在线段BC上时,D(6,4)也满足条件综上所述,满足条件的点D坐标(10,4)或(6,4)(II)如图,当=60°时,作CKAC于K在RtACK中,KAC=60°,AC=4,AK=2,CK=2,OK=6,C(6,2)(III)如图中,当B、C、D共线时,由()可知,C(8,4)如图中,当B、C、D共线时,BD交OA于F,易证BOFACF,OF=FC,设OF=FC=x,在RtABC中,BC=8,在RTBOF中,OB=4,OF=x,BF=8x,(8x)2=42+x2,解得x=3,OF=FC=3,BF=5,作CKOA于K,OBKC,=,=,KC=,KF=,OK=,C(,)【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题22、(1)(或)(2)足球第一次落地距守门员约13米(3)他应再向前跑17米【解析】(1)依题意代入x的值可得抛物线的表达式(2)令y=0可求出x的两个值,再按实际情况筛选(3)本题有多种解法如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD【详解】解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即表达式为(或)(2)令(舍去)足球第一次落地距守门员约13米(3)解法一:如图,第二次足球弹出后的距离为根据题意:(即相当于将抛物线向下平移了2个单位)解得(米)答:他应再向前跑17米23、(1)详见解析;(2)4分.【解析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P(数字之和为5),(2)因为P(甲胜),P(乙胜),甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷34分.【点睛】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.24、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DHAC,由且DH是O的切线,ODH=DHA=90°,ODH=DHA=90°,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.