湖北省黄石市白沙片区重点名校2023年中考一模数学试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若÷,则“”可能是()ABCD2在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A、B、C、D、3下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相平分的四边形是正方形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形4某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A1000(1+x)2=1000+500B1000(1+x)2=500C500(1+x)2=1000D1000(1+2x)=1000+5005如图,数轴上的四个点A,B,C,D对应的数为整数,且ABBCCD1,若|a|+|b|2,则原点的位置可能是()AA或BBB或CCC或DDD或A6某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )人数3421分数80859095A85和82.5B85.5和85C85和85D85.5和807如图,在ABC中,C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,MPQ的面积大小变化情况是( )A一直增大B一直减小C先减小后增大D先增大后减小8某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元9下列各运算中,计算正确的是( )ABCD10如图,在中,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )A或B或C或D或二、填空题(共7小题,每小题3分,满分21分)11有下列等式:由a=b,得52a=52b;由a=b,得ac=bc;由a=b,得;由,得3a=2b;由a2=b2,得a=b其中正确的是_12如图,反比例函数(x0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则OEF的面积的值为 13请写出一个 开口向下,并且与y轴交于点(0,1)的抛物线的表达式_14如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为_15如图,在ABC中,D,E分别是AB,AC边上的点,DEBC若AD6,BD2,DE3,则BC_16已知,如图,正方形ABCD的边长是8,M在DC上,且DM2,N是AC边上的一动点,则DN+MN的最小值是_17如图,在ABC中,AB=AC=6,BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_三、解答题(共7小题,满分69分)18(10分)解方程:2(x-3)=3x(x-3)19(5分)如图,BDAC于点D,CEAB于点E,AD=AE求证:BE=CD20(8分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 21(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.22(10分)如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G(1)求证:AEFD=AFEC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长23(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?24(14分)计算:|1|2sin45°+参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】直接利用分式的乘除运算法则计算得出答案【详解】。故选:A【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键2、C【解析】根据中位数和众数的概念进行求解【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1故选C【点睛】本题考查1.中位数;2.众数,理解概念是解题关键3、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理4、A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b5、B【解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可【详解】ABBCCD1,当点A为原点时,|a|+|b|2,不合题意;当点B为原点时,|a|+|b|2,符合题意;当点C为原点时,|a|+|b|2,符合题意;当点D为原点时,|a|+|b|2,不合题意;故选:B【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值6、B【解析】根据众数及平均数的定义,即可得出答案.【详解】解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.故选:B.【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7、C【解析】如图所示,连接CM,M是AB的中点,SACM=SBCM=SABC,开始时,SMPQ=SACM=SABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,SMPQ=SABC;结束时,SMPQ=SBCM=SABCMPQ的面积大小变化情况是:先减小后增大故选C8、B【解析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,提价20%的价格为0.81a×(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键9、D【解析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D【点睛】本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键10、A【解析】根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论【详解】当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM, AB是直径 即 点M的轨迹是以EF为直径的半圆, 以EF为直径的圆的半径为1点M运动的路径长为 当 时,同理可得点M运动的路径长为故选:A【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】由a=b,得52a=52b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,由,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误, 故答案为: .12、【解析】试题分析:如图,连接OBE、F是反比例函数(x0)的图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=×1=AE=BE,SBOE=SAOE=,SBOC=SAOB=1SBOF=SBOCSCOF=1=F是BC的中点SOEF=S矩形AOCBSAOESCOFSBEF=6×=13、(答案不唯一)【解析】根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可【详解】抛物线开口向下,并且与y轴交于点(0,1)二次函数的一般表达式中,a<0,c=1,二次函数表达式可以为:(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.14、2【解析】分析:由点G是ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GEBC,可证得AEGACD,然后由相似三角形的对应边成比例,即可求得线段GE的长详解:点G是ABC重心,BC=6,CD=BC=3,AG:AD=2:3,GEBC,AEGADC,GE:CD=AG:AD=2:3,GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.15、1【解析】根据已知DEBC得出=进而得出BC的值【详解】DEBC,AD6,BD2,DE3,ADEABC,BC1,故答案为1【点睛】此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.16、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解解答:解:如图,连接BM,点B和点D关于直线AC对称,NB=ND,则BM就是DN+MN的最小值,正方形ABCD的边长是8,DM=2,CM=6,BM=1,DN+MN的最小值是1故答案为1点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用17、或【解析】过点A作AGBC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【详解】如图所示,过点A作AGBC,垂足为G,AB=AC=6,BAC=90°,BC=12,AB=AC,AGBC,AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:DFA=B=C=AFE=45°,DB=DF,EF=FC,DF=x,EF=7-x,在RtDEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,AD的长为或,故答案为:或.【点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.三、解答题(共7小题,满分69分)18、.【解析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.19、证明过程见解析【解析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得AEC和ADB全等,从而可以证得结论【详解】BDAC于点D,CEAB于点E, ADB=AEC=90°,在ADB和AEC中,ADBAEC(ASA) AB=AC, 又AD=AE, BE=CD考点:全等三角形的判定与性质20、(1)10;(2)0.9;(3)44%【解析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:=44%;故答案为44%考点:折线统计图;条形统计图21、(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的面积为:=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.22、(1)详见解析;(2)详见解析;(3)2.【解析】(1)由BD是O的切线得出DBA=90°,推出CHBD,证AECAFD,得出比例式即可(2)证AECAFD,AHEABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可(3)求出EF=FC,求出G=FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出FCB=CAB推出CG是O切线,由切割线定理(或AGCCGB)得出(2+FG)2=BG×AG=2BG2,在RtBFG中,由勾股定理得出BG2=FG2BF2,推出FG24FG12=0,求出FG即可,从而由勾股定理求得AB=BG的长,从而得到O的半径r23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球【解析】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50m)筒,根据总价单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论【详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:,解得:答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50m)筒,依题意,得:60m+45(50m)2550,解得:m1答:最多可以购进1筒甲种羽毛球【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式24、1【解析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案【详解】原式=(1)2×+24=1+24=1【点睛】此题主要考查了实数运算,正确化简各数是解题关键