湖南省长沙市岳麓区长郡梅溪湖达标名校2023年中考数学全真模拟试卷含解析.doc
-
资源ID:88308902
资源大小:627.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省长沙市岳麓区长郡梅溪湖达标名校2023年中考数学全真模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )ABCD26的倒数是()ABC6D63某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A8B10C21D224如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124°,点E在AD的延长线上,则CDE的度数为()A56°B62°C68°D78°5如图,ADE绕正方形ABCD的顶点A顺时针旋转90°,得ABF,连接EF交AB于H,有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;AFE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B3个C4个D5个6如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A或B或C或D或7下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子,则图_中有个棋子( )A31B35C40D508如图所示是由几个完全相同的小正方体组成的几何体的三视图若小正方体的体积是1,则这个几何体的体积为()A2B3C4D59下列说法正确的是()A掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B明天下雪的概率为,表示明天有半天都在下雪C甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D了解一批充电宝的使用寿命,适合用普查的方式10如图所示几何体的主视图是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11点(1,2)关于坐标原点 O 的对称点坐标是_12同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_13若有意义,则x的范围是_14如图,已知正方形ABCD的边长为4,B的半径为2,点P是B上的一个动点,则PDPC的最大值为_15如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为_16若关于x的一元二次方程(a1)x2x+1=0有实数根,则a的取值范围为_17如图,在RtABC中,ACB90°,ACBC6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将PQC沿BC翻折,点P的对应点为点P,设Q点运动的时间为t秒,若四边形QPCP为菱形,则t的值为_三、解答题(共7小题,满分69分)18(10分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?19(5分)如图,在矩形纸片ABCD中,AB=6,BC=1把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长20(8分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;(拓展探究)(2)如图(2)在RtABC中,点F为斜边BC的中点,分别以AB,AC为底边,在RtABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值21(10分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,且CBF=CAB(1)求证:直线BF是O的切线;(2)若AB=5,sinCBF=,求BC和BF的长22(10分)如图,AB是O的直径,C是弧AB的中点,弦CD与AB相交于E若AOD45°,求证:CEED;(2)若AEEO,求tanAOD的值23(12分)已知P是O外一点,PO交O于点C,OC=CP=2,弦ABOC,AOC的度数为60°,连接PB求BC的长;求证:PB是O的切线24(14分)计算:(1)42tan60°+ 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.2、A【解析】解:6的倒数是故选A3、D【解析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.4、C【解析】分析:由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180°(BAC+ACB)=180°2(180°AIC),再利用圆内接四边形的外角等于内对角可得答案详解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124°,B=180°(BAC+ACB)=180°2(IAC+ICA)=180°2(180°AIC)=68°,又四边形ABCD内接于O,CDE=B=68°,故选C点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质5、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90°.AEAF,故此选项正确;AFE=AEF=DAE+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FH·FE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.6、B【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,使成立的取值范围是或,故选B【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.7、C【解析】根据题意得出第n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况8、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.9、C【解析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.10、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图二、填空题(共7小题,每小题3分,满分21分)11、(-1,2)【解析】根据两个点关于原点对称时,它们的坐标符号相反可得答案【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),故答案为:(-1,2)【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律12、50°【解析】【分析】直接利用圆周角定理进行求解即可【详解】弧AB所对的圆心角是100°,弧AB所对的圆周角为50°,故答案为:50°【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半13、x1【解析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可【详解】依题意得:1x0且x30,解得:x1故答案是:x1【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零14、1【解析】分析: 由PDPCPDPGDG,当点P在DG的延长线上时,PDPC的值最大,最大值为DG1详解: 在BC上取一点G,使得BG1,如图,PBGPBC,PBGCBP,PGPC,当点P在DG的延长线上时,PDPC的值最大,最大值为DG1故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题15、1【解析】试题解析:正方体的展开图中对面不存在公共部分,B与-1所在的面为对面B内的数为1故答案为116、a且a1【解析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可【详解】由题意得:0,即(-1)2-4(a-1)×10,解得a,又a-10,a且a1.故答案为a且a1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键17、1【解析】作PDBC于D,PEAC于E,如图,AP=t,BQ=tcm,(0t6)C=90°,AC=BC=6cm,ABC为直角三角形,A=B=45°,APE和PBD为等腰直角三角形,PE=AE=AP=tcm,BD=PD,CE=ACAE=(6t)cm,四边形PECD为矩形,PD=EC=(6t)cm,BD=(6t)cm,QD=BDBQ=(61t)cm,在RtPCE中,PC1=PE1+CE1=t1+(6t)1,在RtPDQ中,PQ1=PD1+DQ1=(6t)1+(61t)1,四边形QPCP为菱形,PQ=PC,t1+(6t)1=(6t)1+(61t)1,t1=1,t1=6(舍去),t的值为1故答案为1【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .三、解答题(共7小题,满分69分)18、(1)y=5x+350;(2)w=5x2+450x7000(30x40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)×5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)×(5x+ 350)=5x2+450x7000(30x70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=5x2+450x7000(30x40);(3)w=5x2+450x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值19、(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:BDC由BDC翻折而成, C=BAG=90°,CD=AB=CD,AGB=DGC,ABG=ADE。在ABGCDG中,BAG=C,AB= CD,ABG=AD C,ABGCDG(ASA)。(2)解:由(1)可知ABGCDG,GD=GB,AG+GB=AD。设AG=x,则GB=1x,在RtABG中,AB2+AG2=BG2,即62+x2=(1x)2,解得x=。(3)解:AEF是DEF翻折而成,EF垂直平分AD。HD=AD=4。tanABG=tanADE=。EH=HD×=4×。EF垂直平分AD,ABAD,HF是ABD的中位线。HF=AB=×6=3。EF=EH+HF=。(1)根据翻折变换的性质可知C=BAG=90°,CD=AB=CD,AGB=DGC,故可得出结论。(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在RtABG中利用勾股定理即可求出AG的长,从而得出tanABG的值。(3)由AEF是DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tanABG的值即可得出EH的长,同理可得HF是ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。20、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或168【解析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据RtABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出AMF=MAN=ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:以点A为旋转中心将正方形ABCD逆时针旋转60°,以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论【详解】(1)AB=AD,CB=CD,点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形理由:如图2,连接AF,RtABC中,点F为斜边BC的中点,AF=CF=BF,又等腰三角形ABD 和等腰三角形ACE,AD=DB,AE=CE,由(1)可得,DFAB,EFAC,又BAC=90°,AMF=MAN=ANF=90°,四边形AMFN是矩形;(3)BD的平方为16+8或168分两种情况:以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'EAB,交BA的延长线于E,由旋转可得,DAD'=60°,EAD'=30°,AB=2=AD',D'E=AD'=,AE=,BE=2+,RtBD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BFAD'于F,旋转可得,DAD'=60°,BAD'=30°,AB=2=AD',BF=AB=,AF=,D'F=2,RtBD'F中,BD'2=BF2+D'F2=()2+(2-)2=168综上所述,BD平方的长度为16+8或168【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解解题时注意:有三个角是直角的四边形是矩形21、(1)证明见解析;(2)BC=;. 【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明ABF=90°(2)利用已知条件证得AGCABF,利用比例式求得线段的长即可(1)证明:连接AE,AB是O的直径,AEB=90°,1+2=90°AB=AC,1=CABCBF=CAB,1=CBFCBF+2=90°即ABF=90°AB是O的直径,直线BF是O的切线(2)解:过点C作CGAB于GsinCBF=,1=CBF,sin1=,在RtAEB中,AEB=90°,AB=5,BE=ABsin1=,AB=AC,AEB=90°,BC=2BE=2,在RtABE中,由勾股定理得AE=2,sin2=,cos2=,在RtCBG中,可求得GC=4,GB=2,AG=3,GCBF,AGCABF,=BF=22、(1)见解析;(2)tanAOD.【解析】(1)作DFAB于F,连接OC,则ODF是等腰直角三角形,得出OC=OD=DF,由垂径定理得出COE=90°,证明DEFCEO得出,即可得出结论;(2)由题意得OE=OA=OC,同(1)得DEFCEO,得出,设O的半径为2a(a0),则OD=2a,EO=a,设EF=x,则DF=2x,在RtODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函数定义即可得出结果【详解】(1)证明:作DFAB于F,连接OC,如图所示:则DFE90°,AOD45°,ODF是等腰直角三角形,OCODDF,C是弧AB的中点,OCAB,COE90°,DEFCEO,DEFCEO,CEED;(2)如图所示:AEEO,OE=OA=OC,同(1)得:,DEFCEO,设O的半径为2a(a0),则OD2a,EOa,设EFx,则DF2x,在RtODF中,由勾股定理得:(2x)2+(x+a)2(2a)2,解得:xa,或xa(舍去),DFa,OFEF+EOa,【点睛】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键23、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定OBC的等边三角形,则BC=OC=2;(2)欲证明PB是O的切线,只需证得OBPB即可(1)解:如图,连接OBABOC,AOC=60°,OAB=30°,OB=OA,OBA=OAB=30°,BOC=60°,OB=OC,OBC的等边三角形,BC=OC又OC=2,BC=2;(2)证明:由(1)知,OBC的等边三角形,则COB=60°,BC=OCOC=CP,BC=PC,P=CBP又OCB=60°,OCB=2P,P=30°,OBP=90°,即OBPB又OB是半径,PB是O的切线考点:切线的判定24、1【解析】首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案解:原式=1“点睛”此题主要考查了实数运算,正确化简各数是解题关键,