湖南长沙市广益实验中学2022-2023学年中考一模数学试题含解析.doc
-
资源ID:88309000
资源大小:722.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南长沙市广益实验中学2022-2023学年中考一模数学试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图依据统计图得出的以下四个结论正确的是()A的收入去年和前年相同B的收入所占比例前年的比去年的大C去年的收入为2.8万D前年年收入不止三种农作物的收入2已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A4b+2cB0C2cD2a+2c3如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿ABC的方向运动,到达点C时停止设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A B C D4如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD5宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有()A(x20)(50)10890Bx(50)50×2010890C(180+x20)(50)10890D(x+180)(50)50×20108906在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD7如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC的位置,此时露在水面上的鱼线B'C'长度是()A3mB mC mD4m8一次函数与的图象如图所示,给出下列结论:;当时,.其中正确的有( )A0个B1个C2个D3个9图1和图2中所有的正方形都全等,将图1的正方形放在图2中的某一位置,所组成的图形不能围成正方体的位置是()ABCD10九章算术是我国古代内容极为丰富的数学名著书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A3步B5步C6步D8步11如图1,在矩形ABCD中,动点E从A出发,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()AB5C6D12如图,直线ABCD,AE平分CAB,AE与CD相交于点E,ACD=40°,则DEA=()A40°B110°C70°D140°二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:2(ab)3b_14如图,在平面直角坐标系中,的顶点、在坐标轴上,点的坐标是(2,2)将ABC沿轴向左平移得到A1B1C1,点落在函数y=-如果此时四边形的面积等于,那么点的坐标是_15如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 _ .16如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 17意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,请根据这组数的规律写出第10个数是_18计算(3)+(9)的结果为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?20(6分)计算:()0|3|+(1)2015+()121(6分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取 名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率22(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?23(8分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,AOM的面积为2求反比例函数的解析式;设点B的坐标为(t,0),其中t2若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值24(10分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:收集数据 从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min): 30 60 81 50 40 110 130 146 90 100 60 81 120 140 70 81 10 20 100 81整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数38分析数据 补全下列表格中的统计量:平均数中位数众数80得出结论 (1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为 ; (2)如果该校现有学生400人,估计等级为“”的学生有多少名? (3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年 (按52周计算)平均阅读多少本课外书?25(10分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90°,点E在AB上,求证:CDACEB26(12分)某商品的进价为每件50元当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?27(12分)问题提出(1)如图,在矩形ABCD中,AB=2AD,E为CD的中点,则AEB ACB(填“”“”“=”);问题探究(2)如图,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,APB最大?并说明理由;问题解决(3)如图,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图中找到点P的位置,并计算此时小刚与大楼AD之间的距离参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】A、前年的收入为60000×=19500,去年的收入为80000×=26000,此选项错误;B、前年的收入所占比例为×100%=30%,去年的收入所占比例为×100%=32.5%,此选项错误;C、去年的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为三种农作物的收入,此选项错误,故选C【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系2、A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,a+c>0,a2b>0,c+2b<0,则原式=a+ca+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.3、B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:等边三角形ABC的边长为3,N为AC的三等分点,AN=1。当点M位于点A处时,x=0,y=1。当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;当动点M到达C点时,x=6,y=31=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。故选B。4、B【解析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键5、C【解析】设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x元,根据题意,得(180+x20)(50)1故选:C【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.6、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键7、B【解析】因为三角形ABC和三角形ABC均为直角三角形,且BC、BC都是我们所要求角的对边,所以根据正弦来解题,求出CAB,进而得出CAB的度数,然后可以求出鱼线B'C'长度【详解】解:sinCABCAB45°CAC15°,CAB60°sin60°,解得:BC3故选:B【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题8、B【解析】仔细观察图象,k的正负看函数图象从左向右成何趋势即可;a,b看y2=x+a,y1=kx+b与y轴的交点坐标;看两函数图象的交点横坐标;以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大【详解】y1=kx+b的图象从左向右呈下降趋势,k0正确;y2=x+a,与y轴的交点在负半轴上,a<0,故错误;当x<3时,y1>y2错误;故正确的判断是故选B【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k0)y随x的变化趋势:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.9、A【解析】由平面图形的折叠及正方体的表面展开图的特点解题【详解】将图1的正方形放在图2中的的位置出现重叠的面,所以不能围成正方体,故选A【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形注意:只要有“田”字格的展开图都不是正方体的表面展开图10、C【解析】试题解析:根据勾股定理得:斜边为 则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,故选C11、B【解析】易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【详解】若点E在BC上时,如图EFC+AEB90°,FEC+EFC90°,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为2×5;故选B【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键12、B【解析】先由平行线性质得出ACD与BAC互补,并根据已知ACD=40°计算出BAC的度数,再根据角平分线性质求出BAE的度数,进而得到DEA的度数【详解】ABCD,ACD+BAC=180°,ACD=40°,BAC=180°40°=140°,AE平分CAB,BAE=BAC=×140°=70°,DEA=180°BAE=110°,故选B【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补二、填空题:(本大题共6个小题,每小题4分,共24分)13、2a+b【解析】先去括号,再合并同类项即可得出答案【详解】原式=2a-2b+3b=2a+b故答案为:2a+b14、 (-5, )【解析】分析:依据点B的坐标是(2,2),BB2AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(5,)详解:如图,点B的坐标是(2,2),BB2AA2,点B2的纵坐标为2又点B2落在函数y=的图象上,当y=2时,x=3,BB2=AA2=5=CC2又四边形AA2C2C的面积等于,AA2×OC=,OC=,点C2的坐标是(5,) 故答案为(5,) 点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度15、4cm【解析】求出扇形的弧长,除以2即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可【详解】扇形的弧长=4,圆锥的底面半径为4÷2=2,故圆锥的高为:=4,故答案为4cm【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长16、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60°,OB=OA=AB=4,OD= OB=2,BD=OBsin60°=4×=2,B(2,2 ),k=2×2 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中17、1【解析】解:3=2+1; 5=3+2; 8=5+3; 13=8+5;可以发现:从第三个数起,每一个数都等于它前面两个数的和则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=1故答案为1点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题此类题目难度一般偏大18、-1【解析】试题分析:利用同号两数相加的法则计算即可得原式=(3+9)=1, 故答案为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率20、-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案详解:解:()0|3|+(1)2015+()1=13+(1)+2=1 点睛:本题主要考查的是实数的计算法则,属于基础题型理解各种计算法则是解决这个问题的关键21、(1)1;(2)详见解析;(3)750;(4)【解析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人)答:共抽取1名学生进行问卷调查;故答案为1(2)足球的人数为:160302436=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°如图所示:(3)3000×0.25=750(人)答:全校学生喜欢足球运动的人数为750人(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确22、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式23、(2)(2)7或2.【解析】试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值试题解析:(2)AOM的面积为2,|k|=2,而k0,k=6,反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=2代入y=得y=6,M点坐标为(2,6),AB=AM=6,t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t-2,C点坐标为(t,t-2),t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),t=2,以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2考点:反比例函数综合题24、(1)填表见解析;(2)160名;(3)平均数;26本.【解析】【分析】先确定统计表中的C、A等级的人数,再根据中位数和众数的定义得到样本数据的中位数和众数;(1)根据统计量,结合统计表进行估计即可;(2)用“B”等级人数所占的比例乘以全校的学生数即可得;(3)选择平均数,计算出全年阅读时间,然后再除以阅读一本课外书的时间即可得.【详解】整理数据 按如下分段整理样本数据并补全表格:课外阅读时间(min)等级DCBA人数3584分析数据 补全下列表格中的统计量:平均数中位数众数808181得出结论(1)观察统计量表格可以估计该校学生每周用于课外阅读时间的情况等级B ,故答案为:B;(2) 8÷20×400=160 该校等级为“”的学生有160名; (3) 选统计量:平均数80×52÷160=26 ,该校学生每人一年平均阅读26本课外书.【点睛】本题考查了中位数、众数、平均数、统计表、用样本估计总体等知识,熟练掌握各统计量的求解方法是关键.25、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=90°,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形26、 (1) 0x20;(2) 降价2.5元时,最大利润是6125元【解析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围(2)将所得函数解析式配方成顶点式可得最大值【详解】(1)根据题意得y=(70x50)(300+20x)=20x2+100x+6000,70x50>0,且x0,0x<20.(2)y=20x2+100x+6000=20(x)2+6125,当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.27、(1);(2)当点P位于CD的中点时,APB最大,理由见解析;(3)4米【解析】(1)过点E作EFAB于点F,由矩形的性质和等腰三角形的判定得到:AEF是等腰直角三角形,易证AEB=90°,而ACB90°,由此可以比较AEB与ACB的大小(2)假设P为CD的中点,作APB的外接圆O,则此时CD切O于P,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BE、BF;由AFB是EFB的外角,得AFBAEB,且AFB与APB均为O中弧AB所对的角,则AFB=APB,即可判断APB与AEB的大小关系,即可得点P位于何处时,APB最大;(3)过点E作CEDF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)AEBACB,理由如下:如图1,过点E作EFAB于点F,在矩形ABCD中,AB=2AD,E为CD中点,四边形ADEF是正方形,AEF=45°,同理,BEF=45°,AEB=90°而在直角ABC中,ABC=90°,ACB90°,AEBACB故答案为:;(2)当点P位于CD的中点时,APB最大,理由如下:假设P为CD的中点,如图2,作APB的外接圆O,则此时CD切O于点P,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BE,BF,AFB是EFB的外角,AFBAEB,AFB=APB,APBAEB,故点P位于CD的中点时,APB最大:(3)如图3,过点E作CEDF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,OA=CQ=BD+QBCD=BD+ABCD,BD=11.6米, AB=3米,CD=EF=1.6米,OA=11.6+31.6=13米,DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.