湖北省当阳市2023年中考数学模拟精编试卷含解析.doc
-
资源ID:88309203
资源大小:915KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北省当阳市2023年中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)2二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c03如图,ADE绕正方形ABCD的顶点A顺时针旋转90°,得ABF,连接EF交AB于H,有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;AFE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B3个C4个D5个4某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环)下列说法中正确的是()A若这5次成绩的中位数为8,则x8B若这5次成绩的众数是8,则x8C若这5次成绩的方差为8,则x8D若这5次成绩的平均成绩是8,则x85如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )A点AB点BC点CD点D6在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a0)的大致图象如图所示,则下列结论正确的是()Aa0,b0,c0B=1Ca+b+c0D关于x的方程ax2+bx+c=1有两个不相等的实数根7已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个8等腰三角形的一个外角是100°,则它的顶角的度数为()A80°B80°或50°C20°D80°或20°9下列美丽的图案中,不是轴对称图形的是( )ABCD10关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2x1x21,则k的取值范围在数轴上表示为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= 12 一般地,当、为任意角时,sin(+)与sin()的值可以用下面的公式求得:sin(+)=sincos+cossin;sin()=sincoscossin例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°=1类似地,可以求得sin15°的值是_13如图,在四边形ABCD中,AC、BD相交于点E,若,则_14如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_15四张背面完全相同的卡片上分别写有0、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为_16若xay与3x2yb是同类项,则ab的值为_三、解答题(共8题,共72分)17(8分)车辆经过润扬大桥收费站时,4个收费通道 AB、C、D中,可随机选择其中的一个通过一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率18(8分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图所示,乙绘制的如图所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?19(8分)先化简再求值:÷(a),其中a2cos30°+1,btan45°20(8分)现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0,若二次函数ymx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式若一次函数ymx+n经过点(2,0),且图象经过第一、三象限二次函数ymx2+nx+1经过点(a,y1)和(a+1,y2),且y1y2,请求出a的取值范围若二次函数ymx2+nx+1的顶点坐标为A(h,k)(h0),同时二次函数yx2+x+1也经过A点,已知1h1,请求出m的取值范围21(8分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值22(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图利用图中所提供的信息解决以下问题:小明一共统计了 个评价;请将图1补充完整;图2中“差评”所占的百分比是 ;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率23(12分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分求证:;若的直径长8,求BE的长24两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知COD=OAB=90°,OC=,反比例函数y=的图象经过点B求k的值把OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k2、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值3、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90°.AEAF,故此选项正确;AFE=AEF=DAE+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FH·FE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.4、D【解析】根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D【详解】A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 3×(8-8)2+(9-8)2+(7-8)2=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;故选D【点睛】本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立5、B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小故选B6、D【解析】试题分析:根据图像可得:a0,b0,c0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=1时有两个交点,即有两个不相等的实数根,则正确,故选D7、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c>0,根据不等式的两边都乘以a(a<0)得:c>2a,由4a2b+c=0得而0<c<2,得到即可求出2ab+1>0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=2代入得:4a2b+c=0,正确;把x=1代入得:y=ab+c>0,如图A点,错误;(2,0)、(x1,0),且1<x1,取符合条件1<x1<2的任何一个x1,2x1<2,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a<0)得:c>2a, 2a+c>0,正确;由4a2b+c=0得 而0<c<2, 1<2ab<02ab+1>0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.8、D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答【详解】等腰三角形的一个外角是100°,与这个外角相邻的内角为180°100°=80°,当80°为底角时,顶角为180°-160°=20°,该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.9、A【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集解:关于x的一元二次方程x2+2x+k+1=0有两个实根,0,44(k+1)0,解得k0,x1+x2=2,x1x2=k+1,2(k+1)1,解得k2,不等式组的解集为2k0,在数轴上表示为:,故选D点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2【解析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b212、【解析】试题分析:sin15°=sin(60°45°)=sin60°cos45°cos60°sin45°=故答案为考点:特殊角的三角函数值;新定义13、【解析】利用相似三角形的性质即可求解;【详解】解: ABCD,AEBCED, , ,故答案为 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质14、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又由双曲线在二、四象限k0,k=-415、【解析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】在0.、这四个实数种,有理数有0.、这3个,抽到有理数的概率为,故答案为【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16、2【解析】试题解析:xay与3x2yb是同类项,a=2,b=1,则ab=2.三、解答题(共8题,共72分)17、(1);(2)【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论试题解析:(1)选择 A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,选择不同通道通过的概率=18、 (1) 乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一);(2)120°;(3)160或1;(4).【解析】(1)对比图与图,找出图中与图不相同的地方;(2)则159.5164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1故答案为160或1;(4)列树状图得:P(一男一女)=19、;【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得【详解】原式÷(),当a2cos30°+12×+1+1,btan45°1时,原式【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值20、(1)yx2,y=x2+1;(2)a;(3)m2或m1【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n2m,利用m与n的关系能求出二次函数对称轴x1,由一次函数经过一、三象限可得m1,确定二次函数开口向上,此时当 y1y2,只需让a到对称轴的距离比a1到对称轴的距离大即可求a的范围(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h,将得到的三个关系联立即可得到,再由题中已知1h1,利用h的范围求出m的范围【详解】(1)将点(2,1),(3,1),代入一次函数ymx+n中,解得,一次函数的解析式是yx2,再将点(2,1),(3,1),代入二次函数ymx2+nx+1,解得,二次函数的解析式是(2)一次函数ymx+n经过点(2,1),n2m,二次函数ymx2+nx+1的对称轴是x,对称轴为x1,又一次函数ymx+n图象经过第一、三象限,m1,y1y2,1a1+a1,a(3)ymx2+nx+1的顶点坐标为A(h,k),kmh2+nh+1,且h,又二次函数yx2+x+1也经过A点,kh2+h+1,mh2+nh+1h2+h+1,又1h1,m2或m1【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法21、(1)7000辆;(2)a的值是1【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x(7500110)10%x,解得x7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,7500×(11%)+110(1+4a%)(1a%)=7752,化简,得a2250a+4600=0,解得:a1=230,a2=1,解得a80,a=1,答:a的值是1【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.22、(1)150;作图见解析;13.3%;(2)【解析】(1)用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率【详解】小明统计的评价一共有:(40+20)÷(1-60%=150(个);“好评”一共有150×60%=90(个),补全条形图如图1:图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,两人中至少有一个给“好评”的概率是考点:扇形统计图;条形统计图;列表法与树状图法23、(1)证明见解析;(2)【解析】先利用等腰三角形的性质得到,利用切线的性质得,则CEBD,然后证明得到BE=CE;作于F,如图,在RtOBC中利用正弦定义得到BC=5,所以,然后在RtBEF中通过解直角三角形可求出BE的长【详解】证明:,是的切线,平分,;解:作于F,如图, 的直径长8,在中,设,则,即,解得,故答案为(1)证明见解析;(2) 【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形24、(1)k=2;(2)点D经过的路径长为【解析】(1)根据题意求得点B的坐标,再代入求得k值即可;(2)设平移后与反比例函数图象的交点为D,由平移性质可知DDOB,过D作DEx轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(1,1),设D横坐标为t,则OE=MF=t,即可得D(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD的长,即可得点D经过的路径长【详解】(1)AOB和COD为全等三的等腰直角三角形,OC=,AB=OA=OC=OD=,点B坐标为(,),代入得k=2;(2)设平移后与反比例函数图象的交点为D,由平移性质可知DDOB,过D作DEx轴于点E,交DC于点F,设CD交y轴于点M,如图, OC=OD=,AOB=COM=45°,OM=MC=MD=1,D坐标为(1,1),设D横坐标为t,则OE=MF=t,DF=DF=t+1,DE=DF+EF=t+2,D(t,t+2),D在反比例函数图象上,t(t+2)=2,解得t=或t=1(舍去),D(1, +1),DD=,即点D经过的路径长为【点睛】本题是反比例函数与几何的综合题,求得点D的坐标是解决第(2)问的关键