清远市重点中学2023年中考数学仿真试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )ABCD2方程的解是( )ABCD3如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A B C D4如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )A2B3C4D65四个有理数1,2,0,3,其中最小的是( )A1 B2 C0 D36不等式组的解集为则的取值范围为( )ABCD7分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABCD8已知一元二次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1<x2),则下列判断正确的是( )A2<x1<x2<3Bx1<2<3<x2C2<x1<3<x2Dx1<2<x2<39下列说法正确的是()A3是相反数B3与3互为相反数C3与互为相反数D3与互为相反数10的相反数是AB2CD11下列由左边到右边的变形,属于因式分解的是()A(x1)(x1)x21Bx22x1x(x2)1Ca2b2(ab)(ab)Dmxmynxnym(xy)n(xy)12如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式:_14如图,边长为6的菱形ABCD中,AC是其对角线,B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 15有一组数据:3,5,5,6,7,这组数据的众数为_16在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_17如图,四边形ACDF是正方形,和都是直角,且点三点共线,则阴影部分的面积是_18如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)本次调查学生共 人,a= ,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率20(6分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形21(6分)阅读 (1)阅读理解:如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_; (2)问题解决:如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF; (3)问题拓展:如图,在四边形ABCD中,B+D=180°,CB=CD,BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明22(8分)如图,已知A(3,0),B(0,1),连接AB,过B点作AB的垂线段BC,使BABC,连接AC如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PACQ;在(2)的条件下若C、P,Q三点共线,求此时APB的度数及P点坐标23(8分)如图,在RtABC中,C=90°,BE平分ABC交AC于点E,作EDEB交AB于点D,O是BED的外接圆求证:AC是O的切线;已知O的半径为2.5,BE=4,求BC,AD的长24(10分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧)()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点求证:点是这个新抛物线与直线的唯一交点;将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围25(10分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角DAN和DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN)求灯杆CD的高度;求AB的长度(结果精确到0.1米)(参考数据:=1.1sin37°060,cos37°0.80,tan37°0.75)26(12分)已知:如图,在梯形ABCD中,ADBC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.(1)求证:DCA=EBC;(2)延长BE交AD于F,求证:AB2=AF·AD27(12分)如图,ABC和BEC均为等腰直角三角形,且ACBBEC90°,AC4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE1,求PBD的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】一次函数y=ax+b的图象经过第一、二、四象限,a<0,b>0,a+b不一定大于0,故A错误,ab<0,故B错误,ab<0,故C错误,<0,故D正确故选D.2、D【解析】按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.3、D【解析】试题分析:俯视图是从上面看到的图形从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D考点:简单组合体的三视图4、B【解析】作ACy轴于C,ADx轴,BDy轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把AOC绕点A逆时针旋转90°得到ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作ACy轴于C,ADx轴,BDy轴,它们相交于D,如图,A点坐标为(1,1),AC=1,OC=1AO绕点A逆时针旋转90°,点O的对应B点,即把AOC绕点A逆时针旋转90°得到ABD,AD=AC=1,BD=OC=1,B点坐标为(2,1),k=2×1=2故选B【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k也考查了坐标与图形变化旋转5、D【解析】解:1102,最小的是1故选D6、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中7、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.8、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-1<0,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.9、B【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键10、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .11、C【解析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.12、D【解析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】直接利用完全平方公式分解因式得出答案【详解】解:=,故答案为.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键14、2【解析】过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,又由题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.15、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键16、1【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a=4,b=3,则ab=1,故答案为1【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.17、8【解析】【分析】证明AECFBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】四边形ACDF是正方形,AC=FA,CAF=90°,CAE+FAB=90°,CEA=90°,CAE+ACE=90°,ACE=FAB,又AEC=FBA=90°,AECFBA,CE=AB=4,S阴影=8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.18、【解析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)300,10; (2)有800人;(3) 【解析】试题分析:试题解析:(1)120÷40%=300,a%=140%30%20%=10%,a=10,10%×300=30,图形如下:(2)2000×40%=800(人),答:估计该校选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.20、见解析【解析】(1)根据平行四边形的性质可得ABDC,OB=OD,由平行线的性质可得OBE=ODF,利用ASA判定BOEDOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EFBD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形【详解】(1)四边形ABCD是平行四边形,O是BD的中点,ABDC,OB=OD,OBE=ODF,又BOE=DOF,BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形;(2)EFBD四边形BEDF是平行四边形,EFBD,平行四边形BEDF是菱形【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.21、(1)2AD8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACDEBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得BMDCFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出NBC=D,由SAS证明NBCFDC,得出CN=CF,NCB=FCD,证出ECN=70°=ECF,再由SAS证明NCEFCE,得出EN=EF,即可得出结论试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图所示:AD是BC边上的中线,BD=CD,在BDE和CDA中,BD=CD,BDE=CDA,DE=AD,BDECDA(SAS),BE=AC=6,在ABE中,由三角形的三边关系得:ABBEAEAB+BE,106AE10+6,即4AE16,2AD8;故答案为2AD8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:同(1)得:BMDCFD(SAS),BM=CF,DEDF,DM=DF,EM=EF,在BME中,由三角形的三边关系得:BE+BMEM,BE+CFEF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:ABC+D=180°,NBC+ABC=180°,NBC=D,在NBC和FDC中,BN=DF,NBC =D,BC=DC,NBCFDC(SAS),CN=CF,NCB=FCD,BCD=140°,ECF=70°,BCE+FCD=70°,ECN=70°=ECF,在NCE和FCE中,CN=CF,ECN=ECF,CE=CE,NCEFCE(SAS),EN=EF,BE+BN=EN,BE+DF=EF考点:全等三角形的判定和性质;三角形的三边关系定理.22、(1)C(1,-4)(2)证明见解析;(3)APB=135°,P(1,0)【解析】(1)作CHy轴于H,证明ABOBCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明PBAQBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到BQC=135°,根据全等三角形的性质得到BPA=BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标【详解】(1)作CHy轴于H,则BCH+CBH=90°,ABBC,ABO+CBH=90°,ABO=BCH,在ABO和BCH中,ABOBCH,BH=OA=3,CH=OB=1,OH=OB+BH=4,C点坐标为(1,4);(2)PBQ=ABC=90°,PBQABQ=ABCABQ,即PBA=QBC,在PBA和QBC中,PBAQBC,PA=CQ;(3)BPQ是等腰直角三角形,BQP=45°,当C、P,Q三点共线时,BQC=135°,由(2)可知,PBAQBC,BPA=BQC=135°,OPB=45°,OP=OB=1,P点坐标为(1,0)【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键23、(1)证明见解析;(2)BC=,AD=【解析】分析:(1)连接OE,由OB=OE知OBE=OEB、由BE平分ABC知OBE=CBE,据此得OEB=CBE,从而得出OEBC,进一步即可得证;(2)证BDEBEC得,据此可求得BC的长度,再证AOEABC得,据此可得AD的长详解:(1)如图,连接OE,OB=OE,OBE=OEB,BE平分ABC,OBE=CBE,OEB=CBE,OEBC,又C=90°,AEO=90°,即OEAC,AC为O的切线;(2)EDBE,BED=C=90°,又DBE=EBC,BDEBEC,即,BC=;AEO=C=90°,A=A,AOEABC,即,解得:AD=点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质24、(1)B(3,0),C(1,0);(2)见解析;t6.【解析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y0,即可得解;(2)根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;当t0时,直线与抛物线只有一个交点N(3,6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 t,0),代入直线解析式:y4x6t,解得t;最后一个交点是B(3t,0),代入y4x6t,解得t6,所以t6.【详解】(1)因为抛物线的顶点为M(1,2),所以对称轴为x1,可得:,解得:a,c,所以抛物线解析式为yx2x,令y0,解得x1或x3,所以B(3,0),C(1,0);(2)翻折后的解析式为yx2x,与直线y4x6联立可得:x23x0,解得:x1x23,所以该一元二次方程只有一个根,所以点N(3,6)是唯一的交点;t6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.25、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H只要证明BC=CD即可;(2)在RtBCH中,求出BH、CH,在 RtADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,DBH=60°,DHB=90°,BDH=30°,CBH=30°,CBD=BDC=30°,BC=CD=10(米);(2)在RtBCH中,CH=BC=5,BH=58.65,DH=15,在RtADH中,AH=20,AB=AHBH=208.65=11.4(米)【点睛】本题考查解直角三角形的应用坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.26、 (1)见解析;(2)见解析.【解析】(1)由ADBC得DAC=BCA, 又AC·CE=AD·BC,ACDCBE ,DCA=EBC,(2)由题中条件易证得ABFDAC,又AB=DC,【详解】证明:(1)ADBC,DAC=BCA,AC·CE=AD·BC,,ACDCBE ,DCA=EBC,(2)ADBC,AFB=EBC,DCA=EBC,AFB=DCA,ADBC,AB=DC,BAD=ADC,ABFDAC,AB=DC,.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.27、 (1)见解析;(2) ACBD,理由见解析;(3)【解析】(1)直接利用相似三角形的判定方法得出BCEDCP,进而得出答案;(2)首先得出PCEDCB,进而求出ACB=CBD,即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到PBD的面积【详解】(1)证明:BCE和CDP均为等腰直角三角形,ECBPCD45°,CEBCPD90°,BCEDCP,;(2)解:结论:ACBD,理由:PCE+ECDBCD+ECD45°,PCEBCD,又,PCEDCB,CBDCEP90°,ACB90°,ACBCBD,ACBD;(3)解:如图所示:作PMBD于M,AC4,ABC和BEC均为等腰直角三角形,BECE4,PCEDCB,即,BD,PBMCBDCBP45°,BPBE+PE4+15,PM5sin45°PBD的面积SBDPM××【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.