福建省晋江市2023届中考数学最后冲刺浓缩精华卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数y3(x1)2+2,下列说法正确的是()A图象的开口向下B图象的顶点坐标是(1,2)C当x1时,y随x的增大而减小D图象与y轴的交点坐标为(0,2)2若关于x的不等式组无解,则a的取值范围是()Aa3Ba3Ca3Da33在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD14如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD5如图,点M为ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与ABCD的另一边交于点N当点M从AB匀速运动时,设点M的运动时间为t,AMN的面积为S,能大致反映S与t函数关系的图象是()ABCD6抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m07如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则ACE的周长为( )A2+B2+2C4D38某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500击中靶心次数(m)8194492178451击中靶心频率()0.800.950.880.920.890.90由此表推断这个射手射击1次,击中靶心的概率是( )A0.6B0.7C0.8D0.99下列大学的校徽图案是轴对称图形的是( )ABCD10已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A1B2C3D411某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )A94分,96分B96分,96分C94分,96.4分D96分,96.4分12若2mn6,则代数式m-n+1的值为()A1B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,点A,B在反比例函数y(x0)的图象上,点C,D在反比例函数y(k0)的图象上,ACBDy轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为_14如图,在ABC中,ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_15如图,ABC内接于O,AB为O的直径,CAB=60°,弦AD平分CAB,若AD=6,则AC=_16如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_17已知二次函数的图象如图所示,有下列结论:,;,其中正确的结论序号是_1821世纪纳米技术将被广泛应用纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取值范围;(3)直线与矩形没有公共点,直接写出的取值范围.20(6分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么1与2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的1与2的关系成立吗?请说明理由21(6分)如图,在顶点为P的抛物线y=a(x-h)2+k(a0)的对称轴1的直线上取点A(h,k+),过A作BCl交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线ml又分别过点B,C作直线BEm和CDm,垂足为E,D在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形(1)直接写出抛物线y=x2的焦点坐标以及直径的长(2)求抛物线y=x2-x+的焦点坐标以及直径的长(3)已知抛物线y=a(x-h)2+k(a0)的直径为,求a的值(4)已知抛物线y=a(x-h)2+k(a0)的焦点矩形的面积为2,求a的值直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值22(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率23(8分)如图,二次函数yx2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6)求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由24(10分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N,若NMNP,求n的值25(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数26(12分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长27(12分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费若只考虑收费,这两位家长应该选择哪家旅行社更合算?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案【详解】解:A、因为a30,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2+k中,对称轴为xh,顶点坐标为(h,k)2、A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可【详解】不等式组无解,a43a+2,解得:a3,故选A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.3、B【解析】|3|=3,|=,|0|=0,|2|=2,|1|=1,3210,绝对值最小的数是0,故选:B4、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键5、C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式详解:假设当A=45°时,AD=2,AB=4,则MN=t,当0t2时,AM=MN=t,则S=,为二次函数;当2t4时,S=t,为一次函数,故选C点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型解答这个问题的关键就是得出函数关系式6、C【解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键7、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+AE+CE=AC+BC=2+2,故选B点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等8、D【解析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.9、B【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、B【解析】先由平均数是3可得x的值,再结合方差公式计算【详解】数据1、2、3、x、5的平均数是3,=3,解得:x=4,则数据为1、2、3、4、5,方差为×(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2,故选B【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义11、D【解析】解:总人数为6÷10%=60(人),则91分的有60×20%=12(人), 98分的有60-6-12-15-9=18(人), 第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96; 这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60 =(552+1128+1110+1761+900)÷60 =5781÷60 =96.1 故选D【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键12、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式×6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换SOACSCOMSAOM,SABDS梯形AMNDS梯形AAMNB进而求解【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y(x0)的图象上,点A,B的横坐标分别为1,2,A(1,1),B(2,),ACBDy轴,C(1,k),D(2,),OAC与ABD的面积之和为,SABDS梯形AMNDS梯形AAMNB,k1,故答案为1【点睛】本题考查反比例函数的性质,k的几何意义能够将三角形面积进行合理的转换是解题的关键14、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图15、2【解析】首先连接BD,由AB是O的直径,可得C=D=90°,然后由BAC=60°,弦AD平分BAC,求得BAD的度数,又由AD=6,求得AB的长,继而求得答案【详解】解:连接BD,AB是O的直径,C=D=90°,BAC=60°,弦AD平分BAC,BAD=BAC=30°,在RtABD中,AB=4,在RtABC中,AC=ABcos60°=4×=2故答案为216、1:1【解析】根据矩形性质得出AD=BC,ADBC,D=90°,求出四边形HFCD是矩形,得出HFG的面积是CD×DH=S矩形HFCD,推出SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,即可得出答案【详解】连接HF,四边形ABCD为矩形,AD=BC,ADBC,D=90°H、F分别为AD、BC边的中点,DH=CF,DHCF,D=90°,四边形HFCD是矩形,HFG的面积是CD×DH=S矩形HFCD,即SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,故答案为1:1【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力17、【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,故正确;对称轴为,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,故正确故答案为【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定18、1.2×101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:12纳米12×0.000000001米1.2×101米故答案为1.2×101【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2);(3)【解析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围【详解】解:(1) ,设直线表达式为,,解得直线表达式为;(2) 直线可以看到是由直线平移得到,当直线过时,直线与矩形有一个公共点,如图1, 当过点时,代入可得,解得.当过点时,可得直线与矩形有公共点时,的取值范围为;(3) ,直线过,且,如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,当过点时,代入可得,解得直线:与矩形没有公共点时的取值范围为【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键本题考查知识点较多,综合性较强,难度适中20、详见解析.【解析】(1)根据全等三角形判定中的“SSS”可得出ADCCBA,由全等的性质得DAC=BCA,可证ADBC,根据平行线的性质得出1=1;(1)(3)和(1)的证法完全一样先证ADCCBA得到DAC=BCA,则DABC,从而1=1【详解】证明:1与1相等在ADC与CBA中,ADCCBA(SSS)DAC=BCADABC1=1图形同理可证,ADCCBA得到DAC=BCA,则DABC,1=121、(1)4(1)4(3)(4)a=±;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,【解析】(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a0)的直径为,可以求得a的值;(4)根据题意和抛物线y=ax1+bx+c(a0)的焦点矩形的面积为1,可以求得a的值;根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值【详解】(1)抛物线y=x1,此抛物线焦点的横坐标是0,纵坐标是:0+=1,抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,此抛物线的直径是:1-(-1)=4;(1)y=x1-x+=(x-3)1+1,此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,此抛物线的直径时5-1=4;(3)焦点A(h,k+),k+=a(x-h)1+k,解得,x1=h+,x1=h-,直径为:h+-(h-)=,解得,a=±,即a的值是;(4)由(3)得,BC=,又CD=A'A=所以,S=BCCD=1解得,a=±;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点由图可知,公共点个数随m的变化关系为当m1-时,无公共点;当m=1-时,1个公共点;当1-m1时,1个公共点;当1m5时,3个公共点;当5m5+时,1个公共点;当m=5+时,1个公共点;当m5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答22、(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-102-1(-1,-1)(-1,0)(-1,2)0(0,-1)(0,0)(0,2)2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,P(点M落在如图所示的正方形网格内)=.考点:1列表或树状图求概率;2平面直角坐标系.23、(1)y=x14x+6;(1)D点的坐标为(6,0);(3)存在当点C的坐标为(4,1)时,CBD的周长最小【解析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接CA,由于BD是定值,使得CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标【详解】(1)把A(1,0),B(8,6)代入,得解得:二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,1)令y=0,得,解得:x1=1,x1=6,D点的坐标为(6,0);(3)二次函数的对称轴上存在一点C,使得的周长最小连接CA,如图,点C在二次函数的对称轴x=4上,xC=4,CA=CD,的周长=CD+CB+BD=CA+CB+BD,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:直线AB的解析式为y=x1当x=4时,y=41=1,当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短24、20(1)y2x5, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用25、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.26、(1)证明见解析;(2)4【解析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得ABCD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:四边形 ABCD 是平行四边形,ABCD,AB=CD,AE=AB,AE=CD,AECD,四边形 ACDE 是平行四边形(2)如图,连接 ECAC=AB=AE,EBC 是直角三角形,cosB=,BE=6,BC=2,EC=4【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型27、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲y乙时,27m24m+48,m16,当y甲y乙时,27m24m+48,m16,答:当学生人数为16人时,两个旅行社的费用一样当学生人数为大于16人时,乙旅行社比较合算当学生人数为小于16人时,甲旅行社比较合算【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.