河北省保定市定兴二中学三校区重点名校2023年中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A50 B0.02 C0.1 D12如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )ABCD3在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为有公共顶点且相等的两个角是对顶角 若,则它们互余A4BCD4已知关于x的方程x24x+c+1=0有两个相等的实数根,则常数c的值为( )A1B0C1D35若式子在实数范围内有意义,则 x的取值范围是( )Ax1Bx1Cx1Dx16如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A5B10C10D157若方程x23x4=0的两根分别为x1和x2,则+的值是()A1B2CD8如图图形中,可以看作中心对称图形的是()ABCD9如图,在ABC中,过点B作PBBC于B,交AC于P,过点C作CQAB,交AB延长线于Q,则ABC的高是( )A线段PBB线段BCC线段CQD线段AQ10如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为A12B9C6D411已知是一个单位向量,、是非零向量,那么下列等式正确的是( )ABCD12如图,已知l1l2,A=40°,1=60°,则2的度数为( )A40°B60°C80°D100°二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式:2a44a2+2_14将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_15(2016辽宁省沈阳市)如图,在RtABC中,A=90°,AB=AC,BC=20,DE是ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O若OMN是直角三角形,则DO的长是_16我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为_17如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为_ 18如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,那么_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,再求值:(1+)÷,其中x=+120(6分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 21(6分)先化简,再求值:,其中的值从不等式组的整数解中选取.22(8分)(1)解不等式组:;(2)解方程:.23(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F求证:OEOF24(10分)如图,AB是O直径,BCAB于点B,点C是射线BC上任意一点,过点C作CD切O于点D,连接AD求证:BCCD;若C60°,BC3,求AD的长25(10分)如图,已知抛物线yax2+bx+1经过A(1,0),B(1,1)两点(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:yk1x+b1(k1,b1为常数,且k10),直线l2:yk2x+b2(k2,b2为常数,且k20),若l1l2,则k1k21解决问题:若直线y2x1与直线ymx+2互相垂直,则m的值是_;抛物线上是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值26(12分)已知P是O外一点,PO交O于点C,OC=CP=2,弦ABOC,AOC的度数为60°,连接PB求BC的长;求证:PB是O的切线27(12分)解方程参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.2、C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形3、D【解析】首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可【详解】解:有公共顶点且相等的两个角是对顶角,错误;,正确;,错误;若,则它们互余,错误;则,故选D【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值4、D【解析】分析:由于方程x24x+c+1=0有两个相等的实数根,所以 =b24ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式 =b24ac:当>0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当<0时,一元二次方程没有实数根.5、A【解析】直接利用二次根式有意义的条件分析得出答案【详解】式子在实数范围内有意义, x10, 解得:x1故选:A【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键6、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=CG,BE=BE,EG=AB=10,GG=AD=5,EG=,C四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键7、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1x2=4代入,即可求出=故选C考点:根与系数的关系8、D【解析】根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义9、C【解析】根据三角形高线的定义即可解题.【详解】解:当AB为ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.10、B【解析】点,是中点点坐标在双曲线上,代入可得点在直角边上,而直线边与轴垂直点的横坐标为-6又点在双曲线点坐标为从而,故选B11、B【解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.12、D【解析】根据两直线平行,内错角相等可得3=1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:l1l2,3=1=60°,2=A+3=40°+60°=100°故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式14、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键15、或【解析】由图可知,在OMN中,OMN的度数是一个定值,且OMN不为直角. 故当ONM=90°或MON=90°时,OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当ONM=90°时,则DNBC.过点E作EFBC,垂足为F.(如图)在RtABC中,A=90°,AB=AC,C=45°,BC=20,在RtABC中,DE是ABC的中位线,在RtCFE中,.BM=3,BC=20,FC=5,MF=BC-BM-FC=20-3-5=12.EF=5,MF=12,在RtMFE中,DE是ABC的中位线,BC=20,DEBC,DEM=EMF,即DEO=EMF,在RtODE中,.(2) 当MON=90°时,则DNME.过点E作EFBC,垂足为F.(如图)EF=5,MF=12,在RtMFE中,在RtMFE中,DEO=EMF,DE=10,在RtDOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.16、4.4×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值17、1【解析】易得:ABMOCM,利用相似三角形的相似比可得出小明的影长【详解】解:根据题意,易得MBAMCO,根据相似三角形的性质可知 ,即,解得AM=1m则小明的影长为1米故答案是:1【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长18、【解析】由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4,即可求得BD的长.【详解】解:由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、,1+ 【解析】运用公式化简,再代入求值.【详解】原式= ,当x=+1时,原式=【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法20、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45°,ODA=45°,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键21、-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可试题解析:原式=解得-1x<,不等式组的整数解为-1,0,1,2 若分式有意义,只能取x=2,原式=-=2【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助22、(1)2x2;(2)x=【解析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可【详解】(1),解不等式得:x2,解不等式得:x2,不等式组的解集为2x2;(2)方程两边都乘以(2x1)(x2)得2x(x2)+x(2x1)=2(x2)(2x1),解得:x=,检验:把x=代入(2x1)(x2)0,所以x=是原方程的解,即原方程的解是x=【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键23、见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得AEOCFO,由全等三角形的对应边相等,可得OE=OF【详解】证明:四边形ABCD是平行四边形,OA=OC,ABDC,EAO=FCO,在AEO和CFO中,AEOCFO(ASA),OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.24、 (1)证明见解析;(2).【解析】(1)根据切线的判定定理得到BC是O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可【详解】(1)AB是O直径,BCAB,BC是O的切线,CD切O于点D,BCCD;(2)连接BD,BCCD,C60°,BCD是等边三角形,BDBC3,CBD60°,ABD30°,AB是O直径,ADB90°,ADBDtanABD【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键25、(1)yx2+x+1;(2)-;点P的坐标(6,14)(4,5);(3).【解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y;(2)由直线y2x1与直线ymx+2互相垂直,得2m1,即m;故答案为;AB的解析式为当PAAB时,PA的解析式为y2x2,联立PA与抛物线,得,解得(舍),即P(6,14);当PBAB时,PB的解析式为y2x+3,联立PB与抛物线,得,解得(舍),即P(4,5),综上所述:PAB是以AB为直角边的直角三角形,点P的坐标(6,14)(4,5);(3)如图:,M(t,t2+t+1),Q(t, t+),MQt2+SMABMQ|xBxA|(t2+)×2t2+,当t0时,S取最大值,即M(0,1)由勾股定理,得AB,设M到AB的距离为h,由三角形的面积,得h点M到直线AB的距离的最大值是【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键26、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定OBC的等边三角形,则BC=OC=2;(2)欲证明PB是O的切线,只需证得OBPB即可(1)解:如图,连接OBABOC,AOC=60°,OAB=30°,OB=OA,OBA=OAB=30°,BOC=60°,OB=OC,OBC的等边三角形,BC=OC又OC=2,BC=2;(2)证明:由(1)知,OBC的等边三角形,则COB=60°,BC=OCOC=CP,BC=PC,P=CBP又OCB=60°,OCB=2P,P=30°,OBP=90°,即OBPB又OB是半径,PB是O的切线考点:切线的判定27、原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x1)(x+2),得x(x+2)(x1)(x+2)3即:x2+2xx2x+23整理,得x1检验:当x1时,(x1)(x+2)0,原方程无解【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法