湖北省武汉青山区七校联考2023届中考一模数学试题含解析.doc
-
资源ID:88309832
资源大小:637.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北省武汉青山区七校联考2023届中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()Am2Bm2Cm2Dm22某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A4个B5个C6个D7个3黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观其落差约30米,年平均流量1010立方米/秒若以小时作时间单位,则其年平均流量可用科学记数法表示为()A6.06×104立方米/时B3.136×106立方米/时C3.636×106立方米/时D36.36×105立方米/时4定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等)现从两位数中任取一个,恰好是“下滑数”的概率为( )ABCD5如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃那么最省事的办法是带( )A带去B带去C带去D带去6如图,ABC中,若DEBC,EFAB,则下列比例式正确的是( )ABCD7若x是2的相反数,|y|=3,则的值是()A2B4C2或4D2或48如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是( )ABCD9已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k0)的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3 By2y1y3 Cy3y2y1 Dy3y1y210若,则( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_12在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是_13函数y=中自变量x的取值范围是_14每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_15因式分解:a2a_16在RtABC中,C=90°,sinA=,那么cosA=_三、解答题(共8题,共72分)17(8分)列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车已知小张家距上班地点10千米他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍小张用骑公共自行车方式上班平均每小时行驶多少千米?18(8分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1如图2,正方形ABCD顶点处各有一个圈跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;设游戏者从圈A起跳(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?19(8分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?20(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程21(8分)如图1,抛物线y1=ax1x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式22(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率23(12分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费(I)根据题意,填写下表:月用水量(吨/户)41016应收水费(元/户) 40 (II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?24如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,且BF是O的切线,BF交AC的延长线于F(1)求证:CBF=CAB (2)若AB=5,sinCBF=,求BC和BF的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据反比例函数的性质,可得m+10,从而得出m的取值范围【详解】函数的图象在其象限内y的值随x值的增大而增大,m+10,解得m-1故选B2、B【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键【详解】请在此输入详解!【点睛】请在此输入点睛!3、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】1010×360×24=3.636×106立方米/时,故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、A【解析】分析:根据概率的求法,找准两点:全部情况的总数:根据题意得知这样的两位数共有90个;符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为故选A点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=5、A【解析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.6、C【解析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解【详解】解:DEBC,BDBC,选项A不正确;DEBC,EFAB,EF=BD,选项B不正确;EFAB,选项C正确;DEBC,EFAB,=,CEAE,选项D不正确;故选C【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健7、D【解析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案【详解】解:x是1的相反数,|y|=3,x=-1,y=±3,y-x=4或-1故选D【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键8、D【解析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.9、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1x20x3,y3y1y2;故选D.考点:反比例函数的性质.10、D【解析】等式左边为非负数,说明右边,由此可得b的取值范围【详解】解:,解得故选D【点睛】本题考查了二次根式的性质:,二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),=1,即b2-4ac=-20a,ax2+bx+c=k有两个不相等的实数根,方程ax2+bx+c-k=0的判别式0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)0抛物线开口向下a01-k0k1故答案为k1点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac0时,二次函数y=ax2+bx+c的图象与x轴有两个交点12、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可【详解】设黄球的个数为x个,共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,60%,解得x30,布袋中白色球的个数很可能是503020(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.13、x且x1【解析】试题解析:根据题意得: 解得:x且x1.故答案为:x且x1.14、2【解析】设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an2n2”,再代入n2029即可求出结论【详解】设第n层有an个三角形(n为正整数),a22,a22+23,a32×2+25,a42×3+27,an2(n2)+22n2当n2029时,a20292×202922故答案为2【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an2n2”是解题的关键15、a(a1)【解析】直接提取公因式a,进而分解因式得出答案【详解】a2aa(a1)故答案为a(a1)【点睛】此题考查公因式,难度不大16、 【解析】RtABC中,C=90°,sinA=,sinA=,c=2a,b= ,cosA=,故答案为.三、解答题(共8题,共72分)17、15千米【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×解得:x=15,经检验x=15是原方程的解且符合实际意义答:小张用骑公共自行车方式上班平均每小时行驶15千米18、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样【解析】(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【详解】(1)共有1种等可能的结果,落回到圈A的只有1种情况,落回到圈A的概率P1=;(2)列表得: 1 2 3 11(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),最后落回到圈A的概率P2=,她与嘉嘉落回到圈A的可能性一样【点睛】此题考查了列表法或树状图法求概率注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数19、购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1答:购买了桂花树苗1棵点睛:本题主要考查的是一元一次方程的应用,属于基础题型解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系20、 (1)y2x2(2)这位乘客乘车的里程是15km【解析】(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k0),运用待定系数法就可以求出结论;(2)将y=32代入(1)的解析式就可以求出x的值【详解】(1)由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k0),由函数图象,得,解得: 故y与x的函数关系式为:y=2x+2; (2)32元>8元,当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.21、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1t+=,解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键22、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)(2)用表格列出所有可能的结果: 第二次第一次红球1红球2白球黑球红球1(红球1,红球2)(红球1,白球)(红球1,黑球)红球2(红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能P(两次都摸到红球)=考点:概率统计23、()16;66;()当x15时,y=4x;当x15时,y=6x30;()居民甲上月用水量为18吨,居民乙用水12吨【解析】()根据题意计算即可;()根据分段函数解答即可;()根据题意,可以分段利用方程或方程组解决用水量问题【详解】解:()当月用水量为4吨时,应收水费=4×4=16元;当月用水量为16吨时,应收水费=15×4+1×6=66元;故答案为16;66;()当x15时,y=4x;当x15时,y=15×4+(x15)×6=6x30;()设居民甲上月用水量为X吨,居民乙用水(X6)吨由题意:X615且X15时,4(X6)+15×4+(X15)×6=126X=18,居民甲上月用水量为18吨,居民乙用水12吨【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题注意在实际问题中,利用方程或方程组是解决问题的常用方法24、(1)证明略;(2)BC=,BF=.【解析】试题分析:(1)连结AE.有AB是O的直径可得AEB=90°再有BF是O的切线可得BFAB,利用同角的余角相等即可证明;(2)在RtABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,过点C作CGAB于点G.可求出AE,再在RtABE中,求出sin2,cos2.然后再在RtCGB中求出CG,最后证出AGCABF有相似的性质求出BF即可.试题解析:(1)证明:连结AE.AB是O的直径, AEB=90°,1+2=90°.BF是O的切线,BFAB, CBF +2=90°.CBF =1. AB=AC,AEB=90°, 1=CAB.CBF=CAB. (2)解:过点C作CGAB于点G.sinCBF=,1=CBF, sin1=.AEB=90°,AB=5. BE=AB·sin1=.AB=AC,AEB=90°, BC=2BE=.在RtABE中,由勾股定理得.sin2=,cos2=.在RtCBG中,可求得GC=4,GB=2. AG=3.GCBF, AGCABF. ,.考点:切线的性质,相似的性质,勾股定理.