襄阳市襄城区2022-2023学年中考猜题数学试卷含解析.doc
-
资源ID:88309839
资源大小:600KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
襄阳市襄城区2022-2023学年中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D62钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD3在六张卡片上分别写有,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()ABCD4已知am=2,an=3,则a3m+2n的值是()A24B36C72D65下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D16把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A36°B45°C72°D90°72018的相反数是()A2018B2018C±2018D8老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A5B9C15D229如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ10的相反数是()AB2CD二、填空题(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系xOy中,点A、B为反比例函数 (x0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x0)的图象绕原点O顺时针旋转90°,A点的对应点为A,B点的对应点为B此时点B的坐标是_12八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_kg13如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_14如图,在平面直角坐标系中,反比例函数y= (x0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_15的相反数是_16已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于_厘米三、解答题(共8题,共72分)17(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.18(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数19(8分)如图,直线与双曲线相交于、两点.(1) ,点坐标为 (2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标20(8分)如图1,在等腰RtABC中,BAC=90°,点E在AC上(且不与点A、C重合),在ABC的外部作等腰RtCED,使CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF(1)求证:AEF是等腰直角三角形;(2)如图2,将CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且CED在ABC的下方时,若AB=2,CE=2,求线段AE的长21(8分)(1)计算:(2)解方程:x24x+2022(10分)如图,一次函数ykxb的图象与反比例函数y(x0)的图象交于点P(n,2),与x轴交于点A(4,0),与y轴交于点C,PBx轴于点B,点A与点B关于y轴对称(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由23(12分)如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G(1)求证:AEFD=AFEC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长24如图,点A是直线AM与O的交点,点B在O上,BDAM,垂足为D,BD与O交于点C,OC平分AOB,B60°求证:AM是O的切线;若O的半径为4,求图中阴影部分的面积(结果保留和根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】如图所示,(a+b)2=21a2+2ab+b2=21,大正方形的面积为13,2ab=2113=8,小正方形的面积为138=1故选C考点:勾股定理的证明2、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率,三是构造的一些不循环的数,如1.010010001(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】这组数中无理数有,共2个,卡片上的数为无理数的概率是 .故选B.【点睛】本题考查了无理数的定义及概率的计算.4、C【解析】试题解析:am=2,an=3,a3m+2n=a3ma2n=(am)3(an)2=23×32=8×9=1故选C.5、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想6、C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72° 故选C点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角7、B【解析】分析:只有符号不同的两个数叫做互为相反数详解:-1的相反数是1故选:B点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键8、B【解析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数【详解】课外书总人数:6÷25%24(人),看5册的人数:245649(人),故选B【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键9、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍10、D【解析】因为-+0,所以-的相反数是.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1,-4)【解析】利用旋转的性质即可解决问题.【详解】如图,由题意A(1,4),B(4,1),A根据旋转的性质可知(4,-1),B(1,-4);所以,B(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题12、1【解析】根据中位数的定义,结合图表信息解答即可【详解】将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,则这八位女生的体重的中位数为=1kg,故答案为1【点睛】本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数13、或或1【解析】如图所示:当AP=AE=1时,BAD=90°,AEP是等腰直角三角形,底边PE=AE=;当PE=AE=1时,BE=ABAE=81=3,B=90°,PB=4,底边AP=;当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或114、1【解析】连接OB,由矩形的性质和已知条件得出OBD的面积=OBE的面积=四边形ODBE的面积,再求出OCE的面积为2,即可得出k的值【详解】连接OB,如图所示:四边形OABC是矩形,OAD=OCE=DBE=90°,OAB的面积=OBC的面积,D、E在反比例函数y=(x>0)的图象上,OAD的面积=OCE的面积,OBD的面积=OBE的面积=四边形ODBE的面积=1,BE=2EC,OCE的面积=OBE的面积=2,k=1故答案为:1【点睛】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变15、【解析】根据只有符号不同的两个数叫做互为相反数解答【详解】的相反数是.故答案为.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.16、1【解析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负【详解】线段c是线段a和线段b的比例中项,解得(线段是正数,负值舍去),故答案为:1【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.三、解答题(共8题,共72分)17、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比18、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人【解析】(1)根据D组人数以及百分比计算即可(2)根据圆心角度数360°×百分比计算即可(3)求出A,C两组人数画出条形图即可(4)利用样本估计总体的思想解决问题即可【详解】(1)本次接受调查的市民共有:50÷25%1(人),故答案为1(2)扇形统计图中,扇形B的圆心角度数360°×43.2°;故答案为:43.2°(3)C组人数1×40%80(人),A组人数12480501630(人)条形统计图如图所示:(4)15×40%6(万人)答:估计乘公交车上班的人数为6万人【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型19、 (1),;(1),.【解析】(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(1)作点A关于y轴的对称点A,作点B作关于x轴的对称点B,连接AB,交x轴于点P,交y轴于点Q,连接PB、QA利用待定系数法求出直线AB的解析式,进而求出P、Q两点坐标【详解】解:(1)把点A(-1,a)代入一次函数y=x+4,得:a=-1+4,解得:a=3,点A的坐标为(-1,3)把点A(-1,3)代入反比例函数y=,得:k=-3,反比例函数的表达式y=-联立两个函数关系式成方程组得: 解得: 或点B的坐标为(-3,1)故答案为3,(-3,1);(1)作点A关于y轴的对称点A,作点B作关于x轴的对称点B,连接AB,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示点B、B关于x轴对称,点B的坐标为(-3,1),点B的坐标为(-3,-1),PB=PB,点A、A关于y轴对称,点A的坐标为(-1,3),点A的坐标为(1,3),QA=QA,BP+PQ+QA=BP+PQ+QA=AB,值最小设直线AB的解析式为y=mx+n,把A,B两点代入得: 解得: 直线AB的解析式为y=x+1令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),令x=0,则y=1,点Q的坐标为(0,1)【点睛】本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键20、(1)证明见解析;(2)证明见解析;(3)4. 【解析】试题分析:(1)依据AE=EF,DEC=AEF=90°,即可证明AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明EKFEDA,再证明AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,RtACH中,AH=3,即可得到AE=AH+EH=4试题解析:解:(1)如图1四边形ABFD是平行四边形,AB=DFAB=AC,AC=DFDE=EC,AE=EFDEC=AEF=90°,AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K四边形ABFD是平行四边形,ABDF,DKE=ABC=45°,EKF=180°DKE=135°,EK=EDADE=180°EDC=180°45°=135°,EKF=ADEDKC=C,DK=DCDF=AB=AC,KF=AD在EKF和EDA中,EKFEDA(SAS),EF=EA,KEF=AED,FEA=BED=90°,AEF是等腰直角三角形,AF=AE(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,EH=DH=CH=,RtACH中,AH=3,AE=AH+EH=4点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点21、(1)-1;(2)x12+,x22【解析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程【详解】(1)原式21+2×1;(2)x24x+20,x24x2,x24x+42+4,即(x2)22,x2±,x12+,x22【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.22、(1)yx1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AOBO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AOBO,PBCO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BPCD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标试题解析:(1)点A与点B关于y轴对称,AOBO,A(4,0),B(4,0),P(4,2),把P(4,2)代入y得m8,反比例函数的解析式:y 把A(4,0),P(4,2)代入ykxb得:,解得:,所以一次函数的解析式:yx1. (2)点A与点B关于y轴对称,OA=OB PB丄x轴于点B,PBA=90°,COA=90°,PBCO,点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形点C为线段AP的中点,BC=,BC和PC是菱形的两条边由yx1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y的图象于点D,分别连结PD、BD,点D(8,1), BPCDPEBE1, CEDE4,PB与CD互相垂直平分, 四边形BCPD为菱形. 点D(8,1)即为所求.23、(1)详见解析;(2)详见解析;(3)2.【解析】(1)由BD是O的切线得出DBA=90°,推出CHBD,证AECAFD,得出比例式即可(2)证AECAFD,AHEABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可(3)求出EF=FC,求出G=FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出FCB=CAB推出CG是O切线,由切割线定理(或AGCCGB)得出(2+FG)2=BG×AG=2BG2,在RtBFG中,由勾股定理得出BG2=FG2BF2,推出FG24FG12=0,求出FG即可,从而由勾股定理求得AB=BG的长,从而得到O的半径r24、 (1)见解析;(2)【解析】(1)根据题意,可得BOC的等边三角形,进而可得BCOBOC,根据角平分线的性质,可证得BDOA,根据BDM90°,进而得到OAM90°,即可得证;(2)连接AC,利用AOC是等边三角形,求得OAC60°,可得CAD30°,在直角三角形中,求出CD、AD的长,则S阴影S梯形OADCS扇形OAC即可得解【详解】(1)证明:B60°,OBOC,BOC是等边三角形,1360°,OC平分AOB,12,23,OABD,BDM90°,OAM90°,又OA为O的半径,AM是O的切线(2)解:连接AC,360°,OAOC,AOC是等边三角形,OAC60°,CAD30°,OCAC4,CD2,AD2 ,S阴影S梯形OADCS扇形OAC ×(4+2)×2【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算