湖北省武汉市部分学校2023届中考联考数学试卷含解析.doc
-
资源ID:88309868
资源大小:578KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北省武汉市部分学校2023届中考联考数学试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算结果正确的是()Ax2+2x23x4B(2x2)38x6Cx2(x3)x5D2x2÷x2x2下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D1093实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )Aa2Ba3CabDab4若关于x的不等式组无解,则m的取值范围()Am3Bm3Cm3Dm35如图,直线ABCD,C44°,E为直角,则1等于()A132°B134°C136°D138°6由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A B C D7如果将直线l1:y2x2平移后得到直线l2:y2x,那么下列平移过程正确的是()A将l1向左平移2个单位B将l1向右平移2个单位C将l1向上平移2个单位D将l1向下平移2个单位82018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )A42,41B41,42C41,41D42,459若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形10如图,ABCD,点E在线段BC上,CD=CE,若ABC=30°,则D为()A85°B75°C60°D30°二、填空题(共7小题,每小题3分,满分21分)11计算(5ab3)2的结果等于_12如图,反比例函数y(x0)的图象经过点A(2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A1+B4+C4D-1+13数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_14如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A的位置,若OB,tanBOC,则点A的坐标为_15写出一个平面直角坐标系中第三象限内点的坐标:(_)16使分式的值为0,这时x=_17方程的解为 三、解答题(共7小题,满分69分)18(10分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BCy轴,垂足为点C,连结AB,AC求该反比例函数的解析式;若ABC的面积为6,求直线AB的表达式19(5分)某市政府大力支持大学生创业李明在政府的扶持下投资销售一种进价为20元的护眼台灯销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y10x+1设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?20(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率21(10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22(10分)如图,已知等边ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DEAC,垂足为E,过点E作EFAB,垂足为F,连接FD(1)求证:DE是O的切线;(2)求EF的长23(12分)如图,菱形中,分别是边的中点求证:.24(14分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2÷x2=2,故此选项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键2、C【解析】试题解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.3、D【解析】试题分析:A如图所示:3a2,故此选项错误;B如图所示:3a2,故此选项错误;C如图所示:1b2,则2b1,又3a2,故ab,故此选项错误;D由选项C可得,此选项正确故选D考点:实数与数轴4、C【解析】根据“大大小小找不着”可得不等式2+m2m-1,即可得出m的取值范围【详解】 ,由得:x2+m,由得:x2m1,不等式组无解,2+m2m1,m3,故选C【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键5、B【解析】过E作EFAB,求出ABCDEF,根据平行线的性质得出C=FEC,BAE=FEA,求出BAE,即可求出答案解:过E作EFAB,ABCD,ABCDEF,C=FEC,BAE=FEA,C=44°,AEC为直角,FEC=44°,BAE=AEF=90°44°=46°,1=180°BAE=180°46°=134°,故选B“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键6、A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A考点:三视图视频7、C【解析】根据“上加下减”的原则求解即可【详解】将函数y2x2的图象向上平移2个单位长度,所得图象对应的函数解析式是y2x故选:C【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键8、C【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个【详解】从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数所以本题这组数据的中位数是 1,众数是 1 故选C【点睛】考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数9、C【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛】如图,E,F,G,H分别是边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键10、B【解析】分析:先由ABCD,得C=ABC=30°,CD=CE,得D=CED,再根据三角形内角和定理得,C+D+CED=180°,即30°+2D=180°,从而求出D详解:ABCD,C=ABC=30°,又CD=CE,D=CED,C+D+CED=180°,即30°+2D=180°,D=75°故选B点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出C,再由CD=CE得出D=CED,由三角形内角和定理求出D二、填空题(共7小题,每小题3分,满分21分)11、25a2b1【解析】代数式内每项因式均平方即可.【详解】解:原式=25a2b1.【点睛】本题考查了代数式的乘方.12、A【解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断OAB为等腰直角三角形,所以AOB=45°,再利用PQOA可得到OPQ=45°,然后轴对称的性质得PB=PB,BBPQ,所以BPQ=BPQ=45°,于是得到BPy轴,则点B的坐标可表示为(-,t),于是利用PB=PB得t-2=|-|=,然后解方程可得到满足条件的t的值【详解】如图,点A坐标为(-2,2),k=-2×2=-4,反比例函数解析式为y=-,OB=AB=2,OAB为等腰直角三角形,AOB=45°,PQOA,OPQ=45°,点B和点B关于直线l对称,PB=PB,BBPQ,BPQ=OPQ=45°,BPB=90°,BPy轴,点B的坐标为(- ,t),PB=PB,t-2=|-|=,整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),t的值为故选A【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程13、【解析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即,解得故答案为:【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键14、【解析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出AD、OD的长度,即可解决问题【详解】解:四边形OABC是矩形,OA=BC,AB=OC,tanBOC=,AB=2OA,OB=,OA=2,AB=2OA由OA翻折得到,OA= OA=2如图,过点A作ADx轴与点D;设AD=a,OD=b;四边形ABCO为矩形,OAB=OCB=90°;四边形ABAD为梯形;设AB=OC=a,BC=AO=b;OB=,tanBOC=,解得: ;由题意得:AO=AO=2;ABOABO;由勾股定理得:x2+y2=2,由面积公式得:xy+2××2×2(x+2)×(y+2);联立并解得:x=,y=故答案为(,)【点睛】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求15、答案不唯一,如:(1,1),横坐标和纵坐标都是负数即可【解析】让横坐标、纵坐标为负数即可【详解】在第三象限内点的坐标为:(1,1)(答案不唯一)故答案为答案不唯一,如:(1,1),横坐标和纵坐标都是负数即可16、1【解析】试题分析:根据题意可知这是分式方程,0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法17、【解析】试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:,经检验,是原方程的根三、解答题(共7小题,满分69分)18、(1)y;(2)yx+1【解析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作ADBC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案【详解】(1)由题意得:kxy2×36,反比例函数的解析式为y;(2)设B点坐标为(a,b),如图,作ADBC于D,则D(2,b),反比例函数y的图象经过点B(a,b),b,AD3,SABCBCADa(3)6,解得a6,b1,B(6,1),设AB的解析式为ykx+b,将A(2,3),B(6,1)代入函数解析式,得,解得:,所以直线AB的解析式为yx+1【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键19、 (1)35元;(2)30元【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价【详解】解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250 当x=35时,W取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元; (2)由题意,得:,解得:, 销售单价不得高于32元, 销售单价应定为30元答:李明想要每月获得2000元的利润,销售单价应定为30元【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题20、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比21、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台总费用为万元。方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。22、 (1)见解析;(2) .【解析】(1)连接OD,根据切线的判定方法即可求出答案;(2)由于ODAC,点O是AB的中点,从而可知OD为ABC的中位线,在RtCDE中,C60°,CECD1,所以AEACCE413,在RtAEF中,所以EFAEsinA3×sin60°.【详解】(1)连接OD,ABC是等边三角形,C=A=B=60°,OD=OB,ODB是等边三角形,ODB=60°ODB=C,ODAC,DEACODDE,DE是O的切线(2)ODAC,点O是AB的中点,OD为ABC的中位线,BD=CD=2在RtCDE中,C=60°,CDE=30°,CE=CD=1AE=ACCE=41=3在RtAEF中,A=60°,EF=AEsinA=3×sin60°=【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型23、证明见解析.【解析】根据菱形的性质,先证明ABEADF,即可得解.【详解】在菱形ABCD中,ABBCCDAD,BD.点E,F分别是BC,CD边的中点,BEBC,DFCD,BEDF.ABEADF,AEAF.24、(1);(1)时,取最大值,为.【解析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,AF=x,CH=x-4,设AQ=z,PH=BQ=6-z,PHEG,即,化简得z=,y=x=-x1+x (4x10);(1)y=-x1+x=-(x-)1+,当x=dm时,y取最大值,最大值是dm1【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质