欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    西宁第十四中学2023年高考全国统考预测密卷数学试卷含解析.doc

    • 资源ID:88309884       资源大小:1.62MB        全文页数:18页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    西宁第十四中学2023年高考全国统考预测密卷数学试卷含解析.doc

    2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则( )ABCD2集合,则( )ABCD3若,则( )ABCD4的展开式中的项的系数为( )A120B80C60D405若复数满足,则( )ABC2D6命题“”的否定为( )ABCD7在边长为1的等边三角形中,点E是中点,点F是中点,则( )ABCD8“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员面向全社会的优质平台,现日益成为老百姓了解国家动态紧跟时代脉搏的热门该款软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )A60B192C240D4329在中,为上异于,的任一点,为的中点,若,则等于( )ABCD10抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )ABCD11中,如果,则的形状是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形12关于函数在区间的单调性,下列叙述正确的是( )A单调递增B单调递减C先递减后递增D先递增后递减二、填空题:本题共4小题,每小题5分,共20分。13二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为_.14已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是_15已知函数则_.16已知向量,且向量与的夹角为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.18(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件) 频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828若,则,.19(12分)如图,在四棱锥中底面是菱形,是边长为的正三角形,为线段的中点求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由20(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.21(12分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点(1)写出曲线C的一般方程;(2)求的最小值22(10分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用诱导公式得,再利用倍角公式,即可得答案.【详解】由可得,.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.2、D【解析】利用交集的定义直接计算即可.【详解】,故,故选:D.【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.3、C【解析】利用指数函数和对数函数的单调性比较、三个数与和的大小关系,进而可得出、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.4、A【解析】化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.5、D【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.6、C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.7、C【解析】根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.8、C【解析】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法注意按“阅读文章”分类【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为故选:C【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法9、A【解析】根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.10、A【解析】设,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,又,两式相减得:,直线的斜率为2,又过点,直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系11、B【解析】化简得lgcosAlglg2,即,结合, 可求,得代入sinCsinB,从而可求C,B,进而可判断.【详解】由,可得lgcosAlg2,sinCsinB,tanC,C,B.故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题12、C【解析】先用诱导公式得,再根据函数图像平移的方法求解即可.【详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项【详解】由题意,展开式通项为,由得,常数项为故答案为:【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键14、【解析】, ,函数y=f(x)g(x)恰好有四个零点,方程f(x)g(x)=0有四个解,即f(x)+f(2x)b=0有四个解,即函数y=f(x)+f(2x)与y=b的图象有四个交点, ,作函数y=f(x)+f(2x)与y=b的图象如下, ,结合图象可知, <b<2,故答案为.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围15、【解析】先由解析式求得(2),再求(2)【详解】(2),所以(2),故答案为:【点睛】本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题16、1【解析】根据向量数量积的定义求解即可【详解】解:向量,且向量与的夹角为,|;所以:()2cos221,故答案为:1【点睛】本题主要考查平面向量的数量积的定义,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).当为奇数时,;当为偶数时,.综上所述,.【点睛】本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.18、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)4.911100万元.【解析】(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)样本平均数,故=,的数学期望,由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展营销活动,则一个月的利润为(万元),若开展营销活动,则一个月的利润为(万元),这100个城市中开展营销活动比不开展每月多盈利100万元.【点睛】本题考查了频率分布直方图与频率分布表的应用,完善列联表并计算的观测值作出判断,分层抽样的简单应用,综合性强,属于中档题.19、证明见解析;2.【解析】利用面面垂直的判定定理证明即可;由,知,所以可得出,因此,的充要条件是,继而得出的值.【详解】解:证明:因为是正三角形,为线段的中点,所以因为是菱形,所以因为,所以是正三角形,所以,而,所以平面又,所以平面因为平面,所以平面平面由,知所以,因此,的充要条件是,所以,即存在满足的点,使得,此时【点睛】本题主要考查平面与平面垂直的判定、三棱锥的体积等基础知识;考查空间想象能力、运算求解能力、推理论证能力和创新意识;考查化归与转化、函数与方程等数学思想,属于难题20、(1)证明见解析;(2)【解析】(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明在上存在唯一的零点即可;(2)根据导函数零点,判断出的单调性,从而可确定,利用以及的单调性,可确定出之间的关系,从而的值可求.【详解】(1)证明:,.在区间上单调递增,在区间上单调递减,函数在上单调递增.又,令,则在上单调递减,故.令,则所以函数在上存在唯一的零点.(2)解:由(1)可知存在唯一的,使得,即(*).函数在上单调递增.当时,单调递减;当时,单调递增.由(*)式得.,显然是方程的解.又是单调递减函数,方程有且仅有唯一的解,把代入(*)式,得,即所求实数的值为.【点睛】本题考查函数与导数的综合应用,其中涉及到判断函数在给定区间上的零点个数以及根据函数的最值求解参数,难度较难.(1)判断函数的零点个数时,可结合函数的单调性以及零点的存在性定理进行判断;(2)函数的“隐零点”问题,可通过“设而不求”的思想进行分析.21、(1);(2)【解析】(1)将曲线的参数方程消参得到普通方程;(2)写出直线MN的参数方程,将参数方程代入曲线方程,并将其化为一个关于的一元二次方程,根据,结合韦达定理和余弦函数的性质,即可求出的最小值.【详解】(1)由曲线C的参数方程(是参数),可得,即曲线C的一般方程为(2)直线MN的参数方程为(t为参数),将直线MN的参数方程代入曲线,得,整理得,设M,N对应的对数分别为,则,当时,取得最小值为【点睛】该题考查的是有关参数方程的问题,涉及到的知识点有参数方程向普通方程的转化,直线的参数方程的应用,属于简单题目.22、(1)见解析;(2).【解析】(1)分两种情况讨论:两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,此时;当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),.综上所述,;(2)根据题意得、,令,则,所以,当时,当时,.因此,的取值范围是.【点睛】本题考查椭圆两切线垂直的证明,同时也考查了弦长的取值范围的计算,考查计算能力,属于中等题.

    注意事项

    本文(西宁第十四中学2023年高考全国统考预测密卷数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开