湖南省武冈市第二中学2023年中考适应性考试数学试题含解析.doc
-
资源ID:88309942
资源大小:710KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省武冈市第二中学2023年中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在-,0,2这四个数中,最小的数是( )ABC0D22如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D43如图,四边形ABCD中,ADBC,B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD24近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A1.8×105B1.8×104C0.18×106D18×1045如图,已知ABCD,ADCD,140°,则2的度数为()A60°B65°C70°D75°6如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )ABCD7下列各式:a0=1 a2·a3=a5 22= (35)(2)4÷8×(1)=0x2+x2=2x2,其中正确的是 ( )ABCD8已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标()ABCD9已知一元二次方程2x2+2x1=0的两个根为x1,x2,且x1x2,下列结论正确的是()Ax1+x2=1Bx1x2=1C|x1|x2|Dx12+x1=10如图,在下列条件中,不能判定直线a与b平行的是( )A1=2B2=3C3=5D3+4=180°二、填空题(共7小题,每小题3分,满分21分)11如果某数的一个平方根是5,那么这个数是_12若分式方程有增根,则m的值为_13有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是_(用含字母x和n的代数式表示)14如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,PEF=35°,则PFE的度数是_15已知直线与抛物线交于A,B两点,则_16股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_17如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tanADN= 三、解答题(共7小题,满分69分)18(10分)如图,在中,的垂直平分线交于,交于,射线上,并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论19(5分)问题探究(1)如图1,ABC和DEC均为等腰直角三角形,且BAC=CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;(2)如图2,在RtABC中,ACB=90°,B=30°,BC=4,过点A作AMAB,点P是射线AM上一动点,连接CP,做CQCP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,BAD=135°,ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值图320(8分)如图,在RtABC中,ABC=90o,AB是O的直径,O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,A=PDB(1)求证:PD是O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图,点M是弧AB的中点,连结DM,交AB于点N若tanA=,求的值21(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元求A,B两种品牌的足球的单价求该校购买20个A品牌的足球和2个B品牌的足球的总费用22(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径23(12分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值24(14分)如图,AD是ABC的中线,AD12,AB13,BC10,求AC长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.2、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30°,OAG=AOG=30°,GOE=90°-AOG=90°-30°=60°,OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.3、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC,B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90°,四边形ABHD为矩形,DH=AB=2EF,HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理4、A【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】180000=1.8×105,故选A【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、C【解析】由等腰三角形的性质可求ACD70°,由平行线的性质可求解【详解】ADCD,140°,ACD70°,ABCD,2ACD70°,故选:C【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题6、C【解析】连接AE,只要证明ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,AB是直径,AEB=90°,即AEBC,EB=EC,AB=AC,C=B,BAC=50°,C= (180°-50°)=65°,故选:C【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题7、D【解析】根据实数的运算法则即可一一判断求解.【详解】有理数的0次幂,当a=0时,a0=0;为同底数幂相乘,底数不变,指数相加,正确;中22= ,原式错误;为有理数的混合运算,正确;为合并同类项,正确故选D.8、C【解析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键9、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x20,x1x20,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断【详解】根据题意得x1+x2=1,x1x2=,故A、B选项错误;x1+x20,x1x20,x1、x2异号,且负数的绝对值大,故C选项错误;x1为一元二次方程2x2+2x1=0的根,2x12+2x11=0,x12+x1=,故D选项正确,故选D【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.10、C【解析】解:A1与2是直线a,b被c所截的一组同位角,1=2,可以得到ab,不符合题意B2与3是直线a,b被c所截的一组内错角,2=3,可以得到ab,不符合题意,C3与5既不是直线a,b被任何一条直线所截的一组同位角,内错角,3=5,不能得到ab,符合题意,D3与4是直线a,b被c所截的一组同旁内角,3+4=180°,可以得到ab,不符合题意,故选C【点睛】本题考查平行线的判定,难度不大二、填空题(共7小题,每小题3分,满分21分)11、25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x(x0),所以x(-5)225.【点睛】本题解题的关键是掌握平方根的定义.12、-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值【详解】方程两边都乘(x-1),得x-1(x-1)=-m原方程增根为x=1,把x=1代入整式方程,得m=-1,故答案为:-1【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值13、【解析】试题分析:根据题意得;根据以上规律可得:=.考点:规律题.14、35°【解析】四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,PE是ABD的中位线,PF是BDC的中位线,PE=AD,PF=BC,又AD=BC,PE=PF,PFE=PEF=35°.故答案为35°.15、【解析】将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x +x =- = ,xx= =-1”,将原代数式通分变形后代入数据即可得出结论.【详解】将代入到中得,整理得,.【点睛】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式16、.【解析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可【详解】设这两天此股票股价的平均增长率为x,由题意得(110%)(1+x)21故答案为:(110%)(1+x)21【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为17、【解析】M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度再利用ADN=DNC即可求得tanADN【详解】解:在正方形ABCD中,BC=CD=1DM=1,CM=2,M、N两点关于对角线AC对称,CN=CM=2ADBC,ADN=DNC,故答案为【点睛】本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义三、解答题(共7小题,满分69分)18、(1)见解析;(2)见解析【解析】(1)求出EFAC,根据EFAC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CEAB,ACAB,推出 AC CE,根据菱形的判定推出即可.【详解】(1)证明:ACB90°,DE是BC的垂直平分线,BDEACB90°,EFAC,EFAC,四边形ACEF是平行四边形,AFCE;(2)当B30°时,四边形ACEF是菱形,证明:B30°,ACB90°,ACAB,DE是BC的垂直平分线,BDDC,DEAC,BEAE,ACB90°,CEAB,CEAC,四边形ACEF是平行四边形,四边形ACEF是菱形,即当B30°时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.19、(1);(2);(3)+.【解析】(1)由等腰直角三角形的性质可得BC=3,CE=,ACB=DCE=45°,可证ACDBCE,可得;(2)由题意可证点A,点Q,点C,点P四点共圆,可得QAC=QPC,可证ABCPQC,可得,可得当QCAB时,PQ的值最小,即可求PQ的最小值;(3)作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证ABCDEC,可得,且BCE=ACD,可证BCEACD,可得BEC=ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值【详解】(1)BAC=CDE=90°,AB=AC=3,DE=CD=1,BC=3,CE=,ACB=DCE=45°,BCE=ACD,BCE=ACD,ACDBCE,;(2)ACB=90°,B=30°,BC=4,AC=,AB=2AC=,QAP=QCP=90°,点A,点Q,点C,点P四点共圆,QAC=QPC,且ACB=QCP=90°,ABCPQC,PQ=×QC=QC,当QC的长度最小时,PQ的长度最小,即当QCAB时,PQ的值最小,此时QC=2,PQ的最小值为;(3)如图,作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,ADC=90°,AD=CD,CAD=45°,BAC=BAD-CAD=90°,ABCDEC,DCE=ACB,BCE=ACD,BCEACD,BEC=ADC=90°,CE=BC=2,点F是EC中点,DF=EF=CE=,BF=,BDDF+BF=+【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键20、(1)见解析;(2);(3). 【解析】(1)连结OD;由AB是O的直径,得到ADB=90°,根据等腰三角形的性质得到ADO=A,BDO=ABD;得到PDO=90°,且D在圆上,于是得到结论;(2)设A=x,则A=P=x,DBA=2x,在ABD中,根据A+ABD=90o列方程求出x的值,进而可得到DOB=60o,然后根据弧长公式计算即可;(3)连结OM,过D作DFAB于点F,然后证明OMNFDN,根据相似三角形的性质求解即可.【详解】(1)连结OD,AB是O的直径,ADB=90o,A+ABD=90o,又OA=OB=OD,BDO=ABD,又A=PDB,PDB+BDO=90o,即PDO=90o,且D在圆上,PD是O的切线 (2)设A=x,DA=DP,A=P=x,DBA=P+BDP=x+x=2x,在ABD中,A+ABD=90o,x=2x=90o,即x=30o,DOB=60o,弧BD长(3)连结OM,过D作DFAB于点F,点M是的中点,OMAB,设BD=x,则AD=2x,AB=2OM,即OM=,在RtBDF中,DF=,由OMNFDN得【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出A=30o是解(2)的关键,证明OMNFDN是解(3)的关键.21、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1【解析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可【详解】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:20×40+2×100=1(元)答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元考点:二元一次方程组的应用22、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算解答:解:如图,OEAB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm23、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1【解析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有, 解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1m%)×400(1+m%)+20(1m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.124、2.【解析】根据勾股定理逆定理,证ABD是直角三角形,得ADBC,可证AD垂直平分BC,所以AB=AC.【详解】解:AD是ABC的中线,且BC=10,BD=BC=112+122=22,即BD2+AD2=AB2,ABD是直角三角形,则ADBC,又CD=BD,AC=AB=2【点睛】本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.