欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    湖北省随州市重点名校2023届毕业升学考试模拟卷数学卷含解析.doc

    • 资源ID:88310121       资源大小:1.10MB        全文页数:22页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    湖北省随州市重点名校2023届毕业升学考试模拟卷数学卷含解析.doc

    2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()ABCD2在3,0,4,这四个数中,最大的数是( )A3B0C4D3有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A5个 B4个 C3个 D2个4在实数,中,其中最小的实数是()ABCD5如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是 ( )A1B2C3D46如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将ABO绕点B逆时针旋转60°后得到A'BO',若函数y=(x0)的图象经过点O',则k的值为()A2B4C4D87下列博物院的标识中不是轴对称图形的是( )ABCD8由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()ABCD9下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A1个B2个C3个D4个10如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD11如图是一个放置在水平桌面的锥形瓶,它的俯视图是()ABCD 12下列因式分解正确的是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为 cm14满足的整数x的值是_15将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_16将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm17如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边ABC的顶点C的坐标为_18如图,在等腰中,点在以斜边为直径的半圆上,为的中点当点沿半圆从点运动至点时,点运动的路径长是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆时针旋转90°后得到的A1B1C120(6分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积21(6分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离(参考数据:tan37°=cot53°0.755,cot37°=tan53°1.327,tan32°=cot58°0.625,cot32°=tan58°1.1)22(8分)如图,梯形ABCD中,ADBC,DCBC,且B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45°交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长23(8分)抛物线y=x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可)24(10分)我市某中学艺术节期间,向全校学生征集书画作品九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率25(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE求证:AECF26(12分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取值范围;(3)直线与矩形没有公共点,直接写出的取值范围.27(12分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:故选:D【点睛】此题考查了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比2、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C3、C【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意共3个既是轴对称图形又是中心对称图形故选C4、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小5、C【解析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.6、C【解析】根据题意可以求得点O'的坐标,从而可以求得k的值【详解】点B的坐标为(0,4),OB=4,作OCOB于点C,ABO绕点B逆时针旋转60°后得到A'BO',OB=OB=4,OC=4×sin60°=2,BC=4×cos60°=2,OC=2,点O的坐标为:(2,2),函数y=(x0)的图象经过点O',2=,得k=4,故选C【点睛】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答7、A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误8、A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形故选A9、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形故选:C【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形10、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B11、B【解析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.12、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确故选:D【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在RtMOF中利用勾股定理求得OF的长即可【详解】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80r,MF=40,在RtOMF中,OM2+MF2=OF2,即(80r)2+402=r2,解得:r=1cm故答案为114、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键15、【解析】先求得ACO=60°,得出OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45°,BCB=75°,ACB=120°,ACO=60°,OAC=30°,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题16、1【解析】试题分析:如图,矩形的对边平行,1=ACB,1=ABC,ABC=ACB,AC=AB,AB=1cm,AC=1cm考点:1轴对称;2矩形的性质;3等腰三角形.17、(2016, +1)【解析】据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可【详解】解:ABC是等边三角形AB312,点C到x轴的距离为1+2×+1,横坐标为2,C(2, +1),第2018次变换后的三角形在x轴上方,点C的纵坐标为+1,横坐标为22018×12016,所以,点C的对应点C的坐标是(2016,+1)故答案为:(2016,+1)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键18、【解析】取的中点,取的中点,连接,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.【详解】解:如图,取的中点,取的中点,连接,在等腰中,点在以斜边为直径的半圆上,为的中位线,当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,弧长,故答案为:.【点睛】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)A(1,6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,A1B1C1为所作,A(1,6);(1)如图,A1B1C1为所作20、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×3+×2×1,=3+1,=1考点:反比例函数与一次函数的交点问题21、10【解析】试题分析:如图:过点C作CDAB于点D,在RtACD中,利用ACD的正切可得AD=0.625CD,同样在RtBCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CDAB于点D,由已知可得:ACD=32°,BCD =37°,在RtACD中,ADC=90°,AD=CD·tanACD=CD·tan32°=0.625CD,在RtBCD中,BDC=90°,BD=CD·tanBCD=CD·tan37°=0.755CD,AB=BD-CD=780,0.755CD-0.625CD=780,CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.22、 (1) CF=1;(2)y=,0x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推出AE2=EMEB,由此构建函数关系式即可解决问题;(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90°,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45°,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+y)(y+2),y=,22x0,0x1(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=B=45°,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90°,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明EAMEBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.23、(1)y=(x)2+;(,);(2)(,)或(,);(0,);【解析】1)把0(0,0),A(4,4v3)的坐标代入y=x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=x2+bx+c,得,解得,抛物线的解析式为y=x2+5x=(x)2+所以抛物线的顶点坐标为(,);(2)由题意B(5,0),A(4,4),直线OA的解析式为y=x,AB=7,抛物线的对称轴x=,P(,)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,QCOB,CQB=QBO=QBC,CQ=BC=OB=5,四边形BOQC是平行四边形,BO=BC,四边形BOQC是菱形,设Q(m,),OQ=OB=5,m2+()2=52,m=±,点Q坐标为(,)或(,);如图2中,由题意点D在以B为圆心5为半径的B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点HAB=7,BD=5,AD=2,D(,),OH=HD,H(,),直线BH的解析式为y=x+,当y=时,x=0,Q(0,)【点睛】本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对24、(1)抽样调查;12;3;(2)60;(3)【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12252=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=,即恰好抽中一男一女的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法;5图表型25、证明见解析【解析】试题分析:通过全等三角形ADECBF的对应角相等证得AED=CFB,则由平行线的判定证得结论证明:平行四边形ABCD中,AD=BC,ADBC,ADE=CBF在ADE与CBF中,AD=BC,ADE=CBF, DE=BF,ADECBF(SAS)AED=CFBAECF26、(1);(2);(3)【解析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围【详解】解:(1) ,设直线表达式为,,解得直线表达式为;(2) 直线可以看到是由直线平移得到,当直线过时,直线与矩形有一个公共点,如图1, 当过点时,代入可得,解得.当过点时,可得直线与矩形有公共点时,的取值范围为;(3) ,直线过,且,如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,当过点时,代入可得,解得直线:与矩形没有公共点时的取值范围为【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键本题考查知识点较多,综合性较强,难度适中27、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15°,CD=BC=1,又EF垂直平分CD,DEF=90°,EDF=EFD=15°, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键

    注意事项

    本文(湖北省随州市重点名校2023届毕业升学考试模拟卷数学卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开