河北省保定市曲阳县2022-2023学年中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm12如图,AD是半圆O的直径,AD12,B,C是半圆O上两点若,则图中阴影部分的面积是( )A6B12C18D243如图,直线mn,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(4,2),点B的坐标为(2,4),则坐标原点为( )AO1BO2CO3DO44下列计算正确的是()A(2a)22a2Ba6÷a3a2C2(a1)22aDaa2a25如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )ABCD6一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )ABCD7一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A2B3C5D78已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )ANOQ42°BNOP132°CPON比MOQ大DMOQ与MOP互补9已知3a2b=1,则代数式56a+4b的值是()A4 B3 C1 D310在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A10B8C5D311滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟12如图所示,在平面直角坐标系中,抛物线y=x22x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OPAP的最小值为( ).A3BCD二、填空题:(本大题共6个小题,每小题4分,共24分)13用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成_(圆形、正方形两者选一)场在面积较大.14在平面直角坐标系中,将点A(3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是_15如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_16因式分解:9a3bab_17一次函数y=(k3)xk+2的图象经过第一、三、四象限则k的取值范围是_18已知正方形ABCD,AB1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由20(6分)如图,已知A=B,AE=BE,点D在AC边上,1=2,AE与BD相交于点O求证:EC=ED21(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒如图1,当t=3时,求DF的长如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tanDEF的值连结AD,当AD将DEF分成的两部分的面积之比为1:2时,求相应的t的值22(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?23(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数24(10分)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ(1)当POQ 时,PQ有最大值,最大值为 ;(2)如图2,若P是OB中点,且QPOB于点P,求的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B恰好落在OA的延长线上,求阴影部分面积25(10分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?26(12分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.27(12分)某商店准备购进甲、乙两种商品已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价进价)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C2、A【解析】根据圆心角与弧的关系得到AOB=BOC=COD=60°,根据扇形面积公式计算即可【详解】,AOB=BOC=COD=60°.阴影部分面积=.故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到AOB=BOC=COD=60°.3、A【解析】试题分析:因为A点坐标为(4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,4),所以,原点在点B的左边,且在点B的上边4个单位处如下图,O1符合考点:平面直角坐标系4、C【解析】解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D, 原式=故选C5、A【解析】先利用勾股定理计算出AB,再在RtBDE中,求出BD即可;【详解】解:C=90°,AC=4,BC=3,AB=5,ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=AC=4,DE=BC=3,BE=AB-AE=5-4=1,在RtDBE中,BD=,故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等6、D【解析】试题分析:列表如下黑白1白2黑(黑,黑)(白1,黑)(白2,黑)白1(黑,白1)(白1,白1)(白2,白1)白2(黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是故答案选D考点:用列表法求概率7、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据根据定义即可求出答案详解:众数为5, x=5, 这组数据为:2,3,3,5,5,5,7, 中位数为5, 故选C点睛:本题主要考查的是众数和中位数的定义,属于基础题型理解他们的定义是解题的关键8、C【解析】试题分析:如图所示:NOQ=138°,选项A错误;NOP=48°,选项B错误;如图可得PON=48°,MOQ=42°,所以PON比MOQ大,选项C正确;由以上可得,MOQ与MOP不互补,选项D错误故答案选C考点:角的度量.9、B【解析】先变形,再整体代入,即可求出答案【详解】3a2b=1,56a+4b=52(3a2b)=52×1=3,故选:B【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键10、B【解析】摸到红球的概率为,解得n=8,故选B11、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.12、A【解析】连接AO,AB,PB,作PHOA于H,BCAO于C,解方程得到x22x=0得到点B,再利用配方法得到点A,得到OA的长度,判断AOB为等边三角形,然后利用OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PHOA于H,BCAO于C,如图当y=0时x22x=0,得x1=0,x2=2,所以B(2,0),由于y=x22x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OPAP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、圆形【解析】根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较【详解】围成的圆形场地的面积较大理由如下:设正方形的边长为a,圆的半径为R,竹篱笆的长度为48米,4a=48,则a=1即所围成的正方形的边长为1;2×R=48,R=,即所围成的圆的半径为,正方形的面积S1=a2=144,圆的面积S2=×()2=,144,围成的圆形场地的面积较大故答案为:圆形【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学14、(0,0)【解析】根据坐标的平移规律解答即可【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是(-3+3,2-2),即(0,0),故答案为(0,0)【点睛】此题主要考查坐标与图形变化-平移平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减15、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1xDGAC,EFAC,DGEF,即,解得DFBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:216、ab(3a+1)(3a-1)【解析】试题分析:原式提取公因式后,利用平方差公式分解即可试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1)考点: 提公因式法与公式法的综合运用17、k3【解析】分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围详解:一次函教y=(k3)xk+2的图象经过第一、三、四象限, 解得,k>3.故答案是:k>3.点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:当时,函数的图象经过第一、二、三象限;当时,函数的图象经过第一、三、四象限;当时,函数的图象经过第一、二、四象限;当时,函数的图象经过第二、三、四象限.18、1r【解析】首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0R1,则-1-R0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围【详解】正方形ABCD中,AB=1,AC=,设圆A的半径为R,点B在圆A外,0R1,-1-R0,-1-R以A、C为圆心的两圆外切,两圆的半径的和为,R+r=,r=-R,-1r故答案为:-1r【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质掌握位置关系与数量之间的关系是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2) (0t3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式(2)用t表示P、M、N 的坐标,由等式得到函数关系式(3)由平行四边形对边相等的性质得到等式,求出t再讨论邻边是否相等【详解】解:(1)x=0时,y=1,点A的坐标为:(0,1),BCx轴,垂足为点C(3,0),点B的横坐标为3,当x=3时,y=,点B的坐标为(3,),设直线AB的函数关系式为y=kx+b, ,解得,则直线AB的函数关系式(2)当x=t时,y=t+1,点M的坐标为(t,t+1),当x=t时,点N的坐标为 (0t3);(3)若四边形BCMN为平行四边形,则有MN=BC,解得t1=1,t2=2,当t=1或2时,四边形BCMN为平行四边形,当t=1时,MP=,PC=2,MC=MN,此时四边形BCMN为菱形,当t=2时,MP=2,PC=1,MC=MN,此时四边形BCMN不是菱形【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用20、见解析【解析】由1=2,可得BED=AEC,根据利用ASA可判定BEDAEC,然后根据全等三角形的性质即可得证.【详解】解:1=2,1+AED=2+AED,即BED=AEC,在BED和AEC中,BEDAEC(ASA),ED=EC【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键21、(1)3;(2)DEF的大小不变,tanDEF=;(3)或【解析】(1)当t=3时,点E为AB的中点,A(8,0),C(0,6),OA=8,OC=6,点D为OB的中点,DEOA,DE=OA=4,四边形OABC是矩形,OAAB,DEAB,OAB=DEA=90°,又DFDE,EDF=90°,四边形DFAE是矩形,DF=AE=3;(2)DEF的大小不变;理由如下:作DMOA于M,DNAB于N,如图2所示:四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90°,DMAB,DNOA,, ,点D为OB的中点,M、N分别是OA、AB的中点,DM=AB=3,DN=OA=4,EDF=90°,FDM=EDN,又DMF=DNE=90°,DMFDNE,EDF=90°,tanDEF=;(3)作DMOA于M,DNAB于N,若AD将DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;当点E到达中点之前时,如图3所示,NE=3t,由DMFDNE得:MF=(3t),AF=4+MF=t+,点G为EF的三等分点,G(,),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得: ,解得: ,直线AD的解析式为y=x+6,把G(,)代入得:t=;当点E越过中点之后,如图4所示,NE=t3,由DMFDNE得:MF=(t3),AF=4MF=t+,点G为EF的三等分点,G(,),代入直线AD的解析式y=x+6得:t=;综上所述,当AD将DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.22、(1)20%;(2)能.【解析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1x)22.88,解得x10.220%,x22.2(不合题意,舍去)答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(120%)3.456(亿元),因为3.4563.4,所以该企业2017年的利润能超过3.4亿元【点睛】此题考查一元二次方程的应用-增长率问题,根据题意寻找相等关系列方程是关键,难度不大23、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1(2)观察条形统计图,这组数据的平均数为15;在这组数据中,16出现了12次,出现的次数最多,这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键24、(1);(2);(3)【解析】(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;(2)先判断出POQ60°,最后用弧长用弧长公式即可得出结论;(3)先在RtB'OP中,OP2+ ,解得OP ,最后用面积的和差即可得出结论【详解】解:(1)P是半径OB上一动点,Q是 上的一动点,当PQ取最大时,点Q与点A重合,点P与点B重合,此时,POQ90°,PQ , 故答案为:90°,10 ;(2)解:如图,连接OQ,点P是OB的中点,OPOB OQQPOB,OPQ90°在RtOPQ中,cosQOP ,QOP60°,lBQ ;(3)由折叠的性质可得, ,在RtB'OP中,OP2+ ,解得OP,S阴影S扇形AOB2SAOP.【点睛】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键25、(1)30°;(2)海监船继续向正东方向航行是安全的【解析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30°,ABP=120°APB=180°-30°-120°=30°(2)过点P作PHAB于点H 在RtAPH中,PAH=30°,AH=PH在RtBPH中,PBH=30°,BH=PHAB=AH-BH=PH=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形26、这辆车第二、三年的年折旧率为.【解析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可【详解】设这辆车第二、三年的年折旧率为,依题意,得 整理得, 解得,.因为折旧率不可能大于1,所以不合题意,舍去.所以 答:这辆车第二、三年的年折旧率为.【点睛】本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键27、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【解析】(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润【详解】(1)设购进甲种商品x件,购进乙商品y件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a件,则购进乙种商品(100a)件,根据题意列得:,解得:20a22,总利润W=5a+10(100a)=5a+1000,W是关于a的一次函数,W随a的增大而减小,当a=20时,W有最大值,此时W=900,且10020=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【点睛】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键