湖北省黄石市十四中学教育集团重点中学2023年中考数学适应性模拟试题含解析.doc
-
资源ID:88310289
资源大小:760KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖北省黄石市十四中学教育集团重点中学2023年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知直线abc,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A4B4.5C5D5.52若不等式组的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5a63某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C先后两次掷一枚质地均匀的硬币,两次都出现反面D先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过94下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab2÷2ab=3b5小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,506下列运算结果正确的是( )A3a2a2 = 2Ba2·a3= a6C(a2)3 = a6Da2÷a2 = a7已知,且,则的值为( )A2或12B2或C或12D或8如图,已知点A,B分别是反比例函数y=(x0),y=(x0)的图象上的点,且AOB=90°,tanBAO=,则k的值为()A2B2C4D49在平面直角坐标系xOy中,将点N(1,2)绕点O旋转180°,得到的对应点的坐标是( )A(1,2)B(1,2)C(1,2)D(1,2)10如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知ABC中,BC=4,AB=2AC,则ABC面积的最大值为_12如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_13化简_14A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_千米15因式分解:_16图中是两个全等的正五边形,则=_17已知A(4,y1),B(1,y2)是反比例函数y=图象上的两个点,则y1与y2的大小关系为_三、解答题(共7小题,满分69分)18(10分)如图,点E、F在BC上,BE=CF,AB=DC,B=C,AF与DE交于点G,求证:GE=GF19(5分)边长为6的等边ABC 中,点D ,E 分别在AC ,BC 边上,DEAB,EC 2如图1,将DEC 沿射线EC 方向平移,得到DEC,边DE与AC 的交点为M ,边CD与ACC的角平分线交于点N.当CC多大时,四边形MCND为菱形?并说明理由如图2,将DEC 绕点C 旋转(0°<<360°),得到D EC,连接AD,BE.边DE的中点为P.在旋转过程中,AD和BE有怎样的数量关系?并说明理由;连接AP ,当AP 最大时,求AD的值(结果保留根号)20(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿)因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?21(10分)有这样一个问题:探究函数的图象与性质小怀根据学习函数的经验,对函数的图象与性质进行了探究下面是小怀的探究过程,请补充完成:(1)函数的自变量x的取值范围是 ;(2)列出y与x的几组对应值请直接写出m的值,m= ;(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质 22(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条超市约定:随机发放,早餐一人一份,一份两样,一样一个按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率23(12分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、求证:;请你判断与的大小关系,并说明理由24(14分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=12故选B考点:平行线分线段成比例2、C【解析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式组得:2xa,不等式组的整数解共有3个,这3个是3,4,5,因而5a1故选C【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了3、D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,故选D【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比4、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键5、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系6、C【解析】选项A, 3a2a2 = 2 a2;选项B, a2·a3= a5;选项C, (a2)3 = a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.7、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.8、D【解析】首先过点A作ACx轴于C,过点B作BDx轴于D,易得OBDAOC,又由点A,B分别在反比例函数y= (x0),y=(x0)的图象上,即可得SOBD= ,SAOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作ACx轴于C,过点B作BDx轴于D,ACO=ODB=90°,OBD+BOD=90°,AOB=90°,BOD+AOC=90°,OBD=AOC,OBDAOC,又AOB=90°,tanBAO= ,=, = ,即 ,解得k=±4,又k0,k=-4,故选:D【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。9、A【解析】根据点N(1,2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.【详解】将点N(1,2)绕点O旋转180°,得到的对应点与点N关于原点中心对称,点N(1,2),得到的对应点的坐标是(1,2).故选A.【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.10、A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式【详解】解:大正方形的面积-小正方形的面积=,矩形的面积=,故,故选:A【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】设AC=x,则AB=2x,根据面积公式得SABC=2x ,由余弦定理求得 cosC代入化简SABC= ,由三角形三边关系求得 ,由二次函数的性质求得SABC取得最大值.【详解】设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,SABC=2x=2x= 由三角形三边关系有 ,解得,故当时, 取得最大值,故答案为: .【点睛】本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.12、 【解析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,A=D=90°由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在RtDEF根据勾股定理列出关于x的方程即可解决问题【详解】设CE=x四边形ABCD是矩形,AD=BC=5,CD=AB=3,A=D=90°将BCE沿BE折叠,使点C恰好落在AD边上的点F处,BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中,由勾股定理得:AF2=52-32=16,AF=4,DF=5-4=1在RtDEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为13、【解析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解【详解】解:法一、=(- ) = = 2-m故答案为:2-m法二、原式= =1-m+1=2-m故答案为:2-m【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律14、【解析】根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离【详解】设甲的速度为akm/h,乙的速度为bkm/h, ,解得,设第二次甲追上乙的时间为m小时,100m25(m1)=600,解得,m=,当甲第二次与乙相遇时,乙离B地的距离为:25×(-1)=千米,故答案为【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答15、【解析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解【详解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1故答案为:x(y+1)1【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止16、108°【解析】先求出正五边形各个内角的度数,再求出BCD和BDC的度数,求出CBD,即可求出答案【详解】如图:图中是两个全等的正五边形,BC=BD,BCD=BDC,图中是两个全等的正五边形,正五边形每个内角的度数是=108°,BCD=BDC=180°-108°=72°,CBD=180°-72°-72°=36°,=360°-36°-108°-108°=108°,故答案为108°【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键17、y1y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题详解:反比例函数y=-,-40,在每个象限内,y随x的增大而增大,A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4-1,y1y1,故答案为:y1y1点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答三、解答题(共7小题,满分69分)18、证明见解析.【解析】【分析】求出BF=CE,根据SAS推出ABFDCE,得对应角相等,由等腰三角形的判定可得结论【详解】BE=CF,BE+EF=CF+EF,BF=CE,在ABF和DCE中,ABFDCE(SAS),GEF=GFE,EG=FG【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键19、 (1) 当CC'=时,四边形MCND'是菱形,理由见解析;(2)AD'=BE',理由见解析;【解析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)分两种情况,利用旋转的性质,即可判断出ACDBCE'即可得出结论;先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论【详解】(1)当CC'=时,四边形MCND'是菱形理由:由平移的性质得,CDC'D',DED'E',ABC是等边三角形,B=ACB=60°,ACC'=180°-ACB=120°,CN是ACC'的角平分线,D'E'C'=ACC'=60°=B,D'E'C'=NCC',D'E'CN,四边形MCND'是平行四边形,ME'C'=MCE'=60°,NCC'=NC'C=60°,MCE'和NCC'是等边三角形,MC=CE',NC=CC',E'C'=2,四边形MCND'是菱形,CN=CM,CC'=E'C'=;(2)AD'=BE',理由:当180°时,由旋转的性质得,ACD'=BCE',由(1)知,AC=BC,CD'=CE',ACD'BCE', AD'=BE',当=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'如图连接CP,在ACP中,由三角形三边关系得,APAC+CP,当点A,C,P三点共线时,AP最大,如图1,在D'CE'中,由P为D'E的中点,得APD'E',PD'=,CP=3,AP=6+3=9,在RtAPD'中,由勾股定理得,AD'=【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大20、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=2.375(不合题意,舍去)答:2018至2020年寝室数量的年平均增长率为37.5%(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(1216y)间,单人间的数量在20至30之间(包括20和30), ,解得:15 y16 根据题意得:w=2y+20y+1216y=16y+121,当y=16时,16y+121取得最大值为1答:该校的寝室建成后最多可供1名师生住宿【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式21、(1)x1;(2)2;(2)见解析;(4)在x1和x1上均单调递增;【解析】(1)根据分母非零即可得出x+10,解之即可得出自变量x的取值范围;(2)将y=代入函数解析式中求出x值即可;(2)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可【详解】解:(1)x+10,x1故答案为x1(2)当y=时,解得:x=2故答案为2(2)描点、连线画出图象如图所示(4)观察函数图象,发现:函数在x1和x1上均单调递增【点睛】本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键22、(1)不可能;(2).【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)证明见解析;(2)证明见解析.【解析】(1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)BGAC是的中点又 BDGCDF(2)由(1)中BDGCDFGD=FD,BG=CF又ED垂直平分DFEG=EF在BEG中,BE+BG>GE,>【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.24、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)A(0,2),BCx轴,B(1,2),C(3,2),AB=1,CA=3,线段AB与线段CA的长度之比为;(2)B是函数y=(x0)的一点,C是函数y=(x0)的一点,B(,a),C(,a),AB=,CA=,线段AB与线段CA的长度之比为;(3)=,=,又OA=a,CDy轴,CD=4a,四边形AODC的面积为=(a+4a)×=1