欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    辽宁省庄河市高级中学2023年高三下第一次测试数学试题含解析.doc

    • 资源ID:88310295       资源大小:1.65MB        全文页数:18页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    辽宁省庄河市高级中学2023年高三下第一次测试数学试题含解析.doc

    2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,则使得成立的的取值范围是( )ABCD2是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要3双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD4已知双曲线 (a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD5已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )A或B或C或D6已知函数在上都存在导函数,对于任意的实数都有,当时,若,则实数的取值范围是( )ABCD7在平行四边形中,若则( )ABCD8已知复数满足:(为虚数单位),则( )ABCD9已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD10若复数,其中为虚数单位,则下列结论正确的是( )A的虚部为BC的共轭复数为D为纯虚数11的展开式中的系数为( )ABCD12已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则ABC面积的最大值为_14在的展开式中,的系数等于_15已知,则_16在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,若的解集为(1)求的值;(2)若正实数,满足,求证:18(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替)(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率)每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由19(12分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.20(12分)在中, 角,的对边分别为, 其中, .(1)求角的值;(2)若,为边上的任意一点,求的最小值.21(12分)设函数,()求曲线在点(1,0)处的切线方程;()求函数在区间上的取值范围22(10分)已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,为偶函数,当时,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.2、B【解析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且 对应的集合是 ,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法集合关系法。设 ,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。3、A【解析】根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.4、A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率,故选:【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件5、A【解析】过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.6、B【解析】先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,又,所以为偶函数, 从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.7、C【解析】由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,  平行四边形中, , ,, 因为, 所以, ,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:()平行四边形法则(平行四边形的对角线分别是两向量的和与差);()三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).8、A【解析】利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.9、A【解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.10、D【解析】将复数整理为的形式,分别判断四个选项即可得到结果.【详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.11、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.12、B【解析】由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:,解得,或(舍去),直线的方程为,设直线与抛物线的另一个交点为,由,解得或,故直线被截得的弦长为故选:B【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在BOD中,BD2,易知O的轨迹为阿氏圆,其半径,故故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.14、7【解析】由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.15、【解析】解:由题意可知: .16、2022【解析】根据条件先求出数列的通项,利用累加法进行求解即可【详解】,下面求数列的通项,由题意知,数列是递增数列,且,的最小值为.故答案为:.【点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键综合性较强,属于难题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见详解.【解析】(1)将不等式的解集用表示出来,结合题中的解集,求出的值;(2)利用柯西不等式证明.【详解】解:(1),因为的解集为,所以,;(2)由(1)由柯西不等式,当且仅当,等号成立【点睛】本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题.18、(1)(2)预算经费不够测试完这100颗芯片,理由见解析【解析】(1)先求出,再利用频率分布直方图的平均数公式求这100颗芯片评测分数的平均数;(2)先求出每颗芯片的测试费用的数学期望,再比较得解.【详解】(1)依题意,故又因为所以,所求平均数为(万分)(2)由题意可知,手机公司抽取一颗芯片置于一个工程机中进行检测评分达到11万分的概率设每颗芯片的测试费用为X元,则X的可能取值为600,900,1200,1500,故每颗芯片的测试费用的数学期望为(元),因为,所以显然预算经费不够测试完这100颗芯片【点睛】本题主要考查频率分布直方图的平均数的计算,考查离散型随机变量的数学期望的计算,意在考查学生对这些知识的理解掌握水平.19、(1)(2)【解析】(1)当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.20、(1);(2).【解析】(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中, 由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【详解】(1) ,由题知,则,则,;(2)在中, 由余弦定理得,设, 其中.在中,所以,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【点睛】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.21、(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:()当,. , 当, 所以切线方程为.(),因为,所以.令,则在单调递减, 因为,所以在上增,在单调递增. , 因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对公式的正确使用.22、(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解: (1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即,解得直线的方程为直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.

    注意事项

    本文(辽宁省庄河市高级中学2023年高三下第一次测试数学试题含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开