河北省张家口市宣化县达标名校2023年中考联考数学试题含解析.doc
-
资源ID:88310492
资源大小:816.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省张家口市宣化县达标名校2023年中考联考数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1化简÷的结果是( )ABCD2(x1)2如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()ABC2D23如图所示,点E在AC的延长线上,下列条件中能判断ABCD的是( )A3=ABD=DCEC1=2DD+ACD=180°42018的绝对值是( )A±2018B2018CD20185下列命题是真命题的个数有()菱形的对角线互相垂直;平分弦的直径垂直于弦;若点(5,5)是反比例函数y=图象上的一点,则k=25;方程2x1=3x2的解,可看作直线y=2x1与直线y=3x2交点的横坐标A1个B2个C3个D4个6若代数式在实数范围内有意义,则x的取值范围是( )ABCD7下列基本几何体中,三视图都是相同图形的是()ABCD8甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,则在本次测试中,成绩更稳定的同学是()A甲B乙C甲乙同样稳定D无法确定9某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A10,1B7,8C1,6.1D1,61020122013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A科比罚球投篮2次,一定全部命中B科比罚球投篮2次,不一定全部命中C科比罚球投篮1次,命中的可能性较大D科比罚球投篮1次,不命中的可能性较小二、填空题(本大题共6个小题,每小题3分,共18分)11函数y的自变量x的取值范围为_12如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为,再沿直线前进5米,到达点C后,又向左旋转角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度为_13一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_度14如图,等边三角形ABC内接于O,若O的半径为2,则图中阴影部分的面积等于_15如图,已知在ABC中,A=40°,剪去A后成四边形,1+2=_°.16(2016辽宁省沈阳市)如图,在RtABC中,A=90°,AB=AC,BC=20,DE是ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O若OMN是直角三角形,则DO的长是_三、解答题(共8题,共72分)17(8分)如图:PCD是等腰直角三角形,DPC=90°,APB=135°求证:(1)PACBPD;(2)若AC=3,BD=1,求CD的长18(8分)如图,在RtABC中,C=90°,以AC为直径作O,交AB于D,过点O作OEAB,交BC于E(1)求证:ED为O的切线;(2)若O的半径为3,ED=4,EO的延长线交O于F,连DF、AF,求ADF的面积19(8分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NPBC,交 OB 于点 P,连接 MP(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值20(8分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角BAD为45°,BC部分的坡角CBE为30°,其中BDAD,CEBE,垂足为D,E现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算可能用到的数据:1.414,1.732)21(8分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N,若NMNP,求n的值22(10分)如图,抛物线y=x2x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求ACP面积的最大值23(12分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(4,0)求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标24如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键2、D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可【详解】过A作ADBC于D,ABC是等边三角形,AB=AC=BC=2,BAC=ABC=ACB=60°,ADBC,BD=CD=1,AD=BD=,ABC的面积为BCAD=,S扇形BAC=,莱洛三角形的面积S=3×2×=22,故选D【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键3、C【解析】由平行线的判定定理可证得,选项A,B,D能证得ACBD,只有选项C能证得ABCD注意掌握排除法在选择题中的应用【详解】A.3=A,本选项不能判断ABCD,故A错误;B.D=DCE,ACBD.本选项不能判断ABCD,故B错误;C.1=2,ABCD.本选项能判断ABCD,故C正确;D.D+ACD=180°,ACBD.故本选项不能判断ABCD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.4、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:2018的绝对值是2018,即故选D点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.5、C【解析】根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可【详解】解:菱形的对角线互相垂直是真命题;平分弦(非直径)的直径垂直于弦,是假命题;若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式一些命题的正确性是用推理证实的,这样的真命题叫做定理6、D【解析】试题解析:要使分式有意义,则1-x0,解得:x1故选D7、C【解析】根据主视图、左视图、俯视图的定义,可得答案【详解】球的三视图都是圆,故选C【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键8、A【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=1.4,S乙2=2.5,S甲2S乙2,甲、乙两名同学成绩更稳定的是甲;故选A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定9、D【解析】根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可【详解】解:这11个数据的中位数是第8个数据,且中位数为1,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元故选:【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键10、A【解析】试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。因此。A、科比罚球投篮2次,不一定全部命中,故本选项正确;B、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;C、科比罚球投篮的命中率大约是83.3%,科比罚球投篮1次,命中的可能性较大,正确,故本选项错误;D、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。故选A。二、填空题(本大题共6个小题,每小题3分,共18分)11、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围12、【解析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度【详解】连续左转后形成的正多边形边数为:,则左转的角度是故答案是:【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键13、130【解析】分析:n边形的内角和是 因而内角和一定是180度的倍数而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1 详解:设多边形的边数为x,由题意有 解得 因而多边形的边数是18,则这一内角为 故答案为点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.14、 【解析】分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.详解:连结OC,ABC为正三角形,AOC=120°, , 图中阴影部分的面积等于 S扇形AOC=即S阴影=cm2.故答案为.点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.15、220.【解析】试题分析:ABC中,A40°,=;如图,剪去A后成四边形12+=;12220°考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键16、或【解析】由图可知,在OMN中,OMN的度数是一个定值,且OMN不为直角. 故当ONM=90°或MON=90°时,OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当ONM=90°时,则DNBC.过点E作EFBC,垂足为F.(如图)在RtABC中,A=90°,AB=AC,C=45°,BC=20,在RtABC中,DE是ABC的中位线,在RtCFE中,.BM=3,BC=20,FC=5,MF=BC-BM-FC=20-3-5=12.EF=5,MF=12,在RtMFE中,DE是ABC的中位线,BC=20,DEBC,DEM=EMF,即DEO=EMF,在RtODE中,.(2) 当MON=90°时,则DNME.过点E作EFBC,垂足为F.(如图)EF=5,MF=12,在RtMFE中,在RtMFE中,DEO=EMF,DE=10,在RtDOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、解答题(共8题,共72分)17、(1)见解析;(2).【解析】(1)由PCD是等腰直角三角形,DPC=90°,APB=135°,可得PAB=PBD,BPD=PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解【详解】证明:(1)PCD是等腰直角三角形,DPC=90°,APB=135°,APC+BPD=45°,又PAB+PBA=45°,PBA+PBD=45°,PAB=PBD,BPD=PAC,PCA=PDB,PACBPD;(2),PC=PD,AC=3,BD=1PC=PD=,CD=【点睛】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法18、(1)见解析;(2)ADF的面积是【解析】试题分析:(1)连接OD,CD,求出BDC=90°,根据OEAB和OA=OC求出BE=CE,推出DE=CE,根据SSS证ECOEDO,推出EDO=ACB=90°即可;(2)过O作OMAB于M,过F作FNAB于N,求出OM=FN,求出BC、AC、AB的值,根据sinBAC,求出OM,根据cosBAC,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可试题解析:(1)证明:连接OD,CD,AC是O的直径,CDA=90°=BDC,OEAB,CO=AO,BE=CE,DE=CE,在ECO和EDO中 ,ECOEDO,EDO=ACB=90°,即ODDE,OD过圆心O,ED为O的切线(2)过O作OMAB于M,过F作FNAB于N,则OMFN,OMN=90°,OEAB,四边形OMFN是矩形,FN=OM,DE=4,OC=3,由勾股定理得:OE=5,AC=2OC=6,OEAB,OECABC,AB=10,在RtBCA中,由勾股定理得:BC=8,sinBAC=,即 ,OM=FN,cosBAC=,AM= 由垂径定理得:AD=2AM=,即ADF的面积是AD×FN=××=答:ADF的面积是【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力19、(1),;(2),1,1【解析】(1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;(2)由题意可得,由(1)可得点的坐标为, 表达出OMP的面积即可,利用二次函数的性质求出最大值【详解】解:(1)OA=6,OC=4, 四边形OABC为矩形,AB=OC=4,点B,设直线OB解析式为,将B代入得,解得,故答案为:;(2)由题可知,由(1)可知,点的坐标为,当时,有最大值1【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式20、33层【解析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数【详解】解:在RtABD中,BD=ABsin45°=3m,在RtBEC中,EC=BC=3m,BD+CE=3+3,改造后每层台阶的高为22cm,改造后的台阶有(3+3)×100÷2233(个)答:改造后的台阶有33个【点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质21、20(1)y2x5, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用22、 (1) A(4,0),B(2,0);(2)ACP最大面积是4.【解析】(1)令y=0,得到关于x 的一元二次方程x2x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PDAO交AC于D,设P(t,t2t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以SACP=PD×OA=PD×4=2PD,可得SACP关于t 的函数关系式,继而可求出ACP面积的最大值【详解】(1)解:设y=0,则0=x2x+4x1=4,x2=2A(4,0),B(2,0)(2)作PDAO交AC于D设AC解析式y=kx+b解得:AC解析式为y=x+4.设P(t,t2t+4)则D(t,t+4)PD=(t2t+4)(t+4)=t22t=(t+2)2+2SACP=PD×4=(t+2)2+4当t=2时,ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.23、(1)(1)S=m14m+4(4m0)(3)(3,1)、(,1)、(,1)【解析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DHx轴于点H,运用割补法即可得到:四边形OCDA的面积=ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标【详解】(1)A(4,0)在二次函数y=ax1x+1(a0)的图象上,0=16a+6+1,解得a=,抛物线的函数解析式为y=x1x+1;点C的坐标为(0,1),设直线AC的解析式为y=kx+b,则,解得,直线AC的函数解析式为:;(1)点D(m,n)是抛物线在第二象限的部分上的一动点,D(m,m1m+1),过点D作DHx轴于点H,则DH=m1m+1,AH=m+4,HO=m,四边形OCDA的面积=ADH的面积+四边形OCDH的面积,S=(m+4)×(m1m+1)+(m1m+1+1)×(m),化简,得S=m14m+4(4m0);(3)若AC为平行四边形的一边,则C、E到AF的距离相等,|yE|=|yC|=1,yE=±1当yE=1时,解方程x1x+1=1得,x1=0,x1=3,点E的坐标为(3,1);当yE=1时,解方程x1x+1=1得,x1=,x1=,点E的坐标为(,1)或(,1);若AC为平行四边形的一条对角线,则CEAF,yE=yC=1,点E的坐标为(3,1)综上所述,满足条件的点E的坐标为(3,1)、(,1)、(,1)24、(1);(2)【解析】(1)将和两点代入函数解析式即可;(2)结合二次函数图象即可【详解】解:(1)二次函数与轴交于和两点,解得二次函数的表达式为 (2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质