河北省滦州市重点达标名校2023年中考三模数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A平均数B众数C方差D标准差2下列命题是真命题的个数有()菱形的对角线互相垂直;平分弦的直径垂直于弦;若点(5,5)是反比例函数y=图象上的一点,则k=25;方程2x1=3x2的解,可看作直线y=2x1与直线y=3x2交点的横坐标A1个B2个C3个D4个3扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )A10cmB20cmC10cmD20cm4两个一次函数,它们在同一直角坐标系中的图象大致是( )ABCD5下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b26若在同一直角坐标系中,正比例函数yk1x与反比例函数y的图象无交点,则有()Ak1k20Bk1k20Ck1k20Dk1k207在实数 ,0.21, , ,0.20202中,无理数的个数为()A1B2C3D48下列所给函数中,y随x的增大而减小的是()Ay=x1By=2x2(x0)CDy=x+19若a是一元二次方程x2x1=0的一个根,则求代数式a32a+1的值时需用到的数学方法是()A待定系数法 B配方 C降次 D消元10如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线BC为m,则鱼竿转过的角度是()A60°B45°C15°D90°二、填空题(本大题共6个小题,每小题3分,共18分)11若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)_12因式分解:9a3bab_13已知ab1,那么a2b22b_14一元二次方程x2=3x的解是:_15已知点A(2,4)与点B(b1,2a)关于原点对称,则ab_16如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的读数为,则该直尺的宽度为_三、解答题(共8题,共72分)17(8分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A(1)求抛物线的解析式;(2)如图1,过点B作BCx轴于点C,连接FC,求证:FC平分BFO;当k= 时,点F是线段AB的中点;(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由18(8分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”请你用列表法(或画树状图)求小宇“略胜一筹”的概率19(8分)如图1,ABC与CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN(1)观察猜想:图1中,PM与PN的数量关系是 ,位置关系是 (2)探究证明:将图1中的CDE绕着点C顺时针旋转(0°90°),得到图2,AE与MP、BD分别交于点G、H,判断PMN的形状,并说明理由;(3)拓展延伸:把CDE绕点C任意旋转,若AC=4,CD=2,请直接写出PMN面积的最大值20(8分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、求此抛物线的解析式求此抛物线顶点的坐标和四边形的面积21(8分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?22(10分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(3,0)(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点若点P在抛物线上,且,求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值23(12分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?24如图,一次函数y=k1x+b(k10)与反比例函数的图象交于点A(-1,2),B(m,-1)求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使ABP为等腰三角形,请你直接写出P点的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数 故选B点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用2、C【解析】根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可【详解】解:菱形的对角线互相垂直是真命题;平分弦(非直径)的直径垂直于弦,是假命题;若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式一些命题的正确性是用推理证实的,这样的真命题叫做定理3、A【解析】试题解析:扇形的弧长为:=20cm,圆锥底面半径为20÷2=10cm,故选A考点:圆锥的计算4、B【解析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合故选:B【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k0),k0时,一次函数图象经过第一三象限,k0时,一次函数图象经过第二四象限,b0时与y轴正半轴相交,b0时与y轴负半轴相交5、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键6、D【解析】当k1,k2同号时,正比例函数yk1x与反比例函数y的图象有交点;当k1,k2异号时,正比例函数yk1x与反比例函数y的图象无交点,即可得当k1k20时,正比例函数yk1x与反比例函数y的图象无交点,故选D.7、C【解析】在实数,0.21, , , ,0.20202中,根据无理数的定义可得其中无理数有,共三个故选C8、A【解析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项【详解】解:A此函数为一次函数,y随x的增大而减小,正确;B此函数为二次函数,当x0时,y随x的增大而减小,错误;C此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D此函数为一次函数,y随x的增大而增大,错误故选A【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键9、C【解析】根据一元二次方程的解的定义即可求出答案【详解】由题意可知:a2-a-1=0,a2-a=1,或a2-1=aa3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义10、C【解析】试题解析:sinCAB=CAB=45°,CAB=60°CAC=60°-45°=15°,鱼竿转过的角度是15°故选C考点:解直角三角形的应用二、填空题(本大题共6个小题,每小题3分,共18分)11、y=x(答案不唯一)【解析】首先设一次函数解析式为:y=kx+b(k0), b取任意值后,把(1,1)代入所设的解析式里,即可得到k的值,进而得到答案.【详解】解:设直线的解析式y=kx+b,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.12、ab(3a+1)(3a-1)【解析】试题分析:原式提取公因式后,利用平方差公式分解即可试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1)考点: 提公因式法与公式法的综合运用13、1【解析】解:a+b=1,原式= 故答案为1.【点睛】本题考查的是平方差公式的灵活运用.14、x1=0,x2=1【解析】先移项,然后利用因式分解法求解【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,x1=0,x2=1故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解15、1【解析】由题意,得b1=1,1a=4,解得b=1,a=1,ab=(1) ×(1)=1,故答案为1.16、【解析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.【详解】连接OC,OD,OC与AD交于点E, 直尺的宽度: 故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.三、解答题(共8题,共72分)17、(1);(2)见解析;(3)存在点B,使MBF的周长最小MBF周长的最小值为11,直线l的解析式为【解析】(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.(2)由于BCy轴,容易看出OFCBCF,想证明BFCOFC,可转化为求证BFCBCF,根据“等边对等角”,也就是求证BCBF,可作BDy轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MNx轴于点N,交抛物线于点B1,过点B作BEx轴于点E,连接B1F,通过第(2)问的结论将MBF的边转化为,可以发现,当点运动到位置时,MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.【详解】(1)解:将点(-2,2)和(4,5)分别代入,得:解得: 抛物线的解析式为: (2)证明:过点B作BDy轴于点D,设B(m,), BCx轴,BDy轴,F(0,2)BC,BD|m|,DFBCBF BFCBCF又BCy轴,OFCBCFBFCOFCFC平分BFO (说明:写一个给1分)(3)存在点B,使MBF的周长最小.过点M作MNx轴于点N,交抛物线于点B1,过点B作BEx轴于点E,连接B1F由(2)知B1FB1N,BFBEMB1F的周长MF+MB1+B1FMF+MB1+B1NMF+MNMBF的周长MF+MB+BFMF+MB+BE根据垂线段最短可知:MNMB+BE当点B在点B1处时,MBF的周长最小 M(3,6),F(0,2),MN6MBF周长的最小值MF+MN5+611 将x3代入,得:B1(3,)将F(0,2)和B1(3,)代入y=kx+b,得:,解得:此时直线l的解析式为:【点睛】本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.18、(1);(2)P(小宇“略胜一筹”).【解析】分析:(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;(2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.详解:(1)P(摸出标有数字是3的球).(2)小宇和小静摸球的所有结果如下表所示:小静小宇4563(3,4)(3,5)(3,6)4(4,4)(4,5)(4,6)5(5,4)(5,5)(5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P(小宇“略胜一筹”).点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.19、(1)PM=PN,PMPN(2)等腰直角三角形,理由见解析(3) 【解析】(1)由等腰直角三角形的性质易证ACEBCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PMPN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【详解】解:(1)PM=PN,PMPN,理由如下:延长AE交BD于O,ACB和ECD是等腰直角三角形,AC=BC,EC=CD,ACB=ECD=90°在ACE和BCD中,ACEBCD(SAS),AE=BD,EAC=CBD,EAC+AEC=90°,AEC=BEO,CBD+BEO=90°,BOE=90°,即AEBD,点M、N分别是斜边AB、DE的中点,点P为AD的中点,PM=BD,PN=AE,PM=PM,PMBD,PNAE,AEBD,NPD=EAC,MPA=BDC,EAC+BDC=90°,MPA+NPC=90°,MPN=90°,即PMPN,故答案是:PM=PN,PMPN;(2)如图中,设AE交BC于O,ACB和ECD是等腰直角三角形,AC=BC,EC=CD,ACB=ECD=90°,ACB+BCE=ECD+BCE,ACE=BCD,ACEBCD,AE=BD,CAE=CBD,又AOC=BOE,CAE=CBD,BHO=ACO=90°,点P、M、N分别为AD、AB、DE的中点,PM=BD,PMBD,PN=AE,PNAE,PM=PN,MGE+BHA=180°,MGE=90°,MPN=90°,PMPN;(3)由(2)可知PMN是等腰直角三角形,PM=BD,当BD的值最大时,PM的值最大,PMN的面积最大,当B、C、D共线时,BD的最大值=BC+CD=6,PM=PN=3,PMN的面积的最大值=×3×3=【点睛】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题20、 ;【解析】(1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;(2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=SABC+SBCD可求得四边形ABDC的面积【详解】由已知得:,把与坐标代入得:,解得:,则解析式为;,抛物线顶点坐标为,则【点睛】二次函数的综合应用解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形21、 (1)一共调查了300名学生;(2) 36°,补图见解析;(3)估计选择“A:跑步”的学生约有800人.【解析】(1)由跑步的学生数除以占的百分比求出调查学生总数即可;(2)求出跳绳学生占的百分比,乘以360°求出占的圆心角度数,补全条形统计图即可;(3)利用跑步占的百分比,乘以2000即可得到结果【详解】(1)根据题意得:120÷40%=300(名),则一共调查了300名学生;(2)根据题意得:跳绳学生数为300(120+60+90)=30(名),则扇形统计图中“B:跳绳”所对扇形的圆心角的度数为360°×=36°,;(3)根据题意得:2000×40%=800(人),则估计选择“A:跑步”的学生约有800人【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键22、(1)点B的坐标为(1,0).(2)点P的坐标为(4,21)或(4,5).线段QD长度的最大值为.【解析】(1)由抛物线的对称性直接得点B的坐标(2)用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QDx轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)A、B两点关于对称轴对称 ,且A点的坐标为(3,0),点B的坐标为(1,0).(2)抛物线,对称轴为,经过点A(3,0),解得.抛物线的解析式为.B点的坐标为(0,3).OB=1,OC=3.设点P的坐标为(p,p2+2p-3),则.,解得.当时;当时,点P的坐标为(4,21)或(4,5).设直线AC的解析式为,将点A,C的坐标代入,得:,解得:.直线AC的解析式为.点Q在线段AC上,设点Q的坐标为(q,-q-3).又QDx轴交抛物线于点D,点D的坐标为(q,q2+2q-3).,线段QD长度的最大值为.23、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个, 40x +60(100-x)=5200 ,解得:x=40 , 100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个(2)设A型足球x个,则B型足球(100-x)个,100-x ,解得:x60 ,设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,k=-20,y随x的增大而减小,当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.24、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0)【解析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,反比例函数的解析式为B(m,-1)在上,m=2,由题意,解得:,一次函数的解析式为y=-x+1(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0)【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.