湘赣十四校联考2023年高三第五次模拟考试数学试卷含解析.doc
2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。12020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有( )A6种B12种C24种D36种2某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( )AB6CD3已知变量,满足不等式组,则的最小值为( )ABCD4设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减小,增大C增大,减小D增大,增大5已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD6已知函数(,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7已知集合,则等于( )ABCD8若非零实数、满足,则下列式子一定正确的是( )ABCD9已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布,则,)A4.56%B13.59%C27.18%D31.74%10已知全集,集合,则阴影部分表示的集合是( )ABCD11的展开式中的项的系数为( )A120B80C60D4012过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足对任意,则数列的通项公式_.14已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是_15已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为则该三棱柱的侧面积为_16已知等比数列的各项均为正数,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求的极值;(2)若,且,证明:.18(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?19(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.20(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.21(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.22(10分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率附表及公式:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.2、D【解析】根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.3、B【解析】先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.4、C【解析】,判断其在内的单调性即可【详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题5、C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.6、B【解析】先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,再由, 取,.将函数的图象向右平移个单位长度,得到函数的图象,.,令,则,显然,是的必要不充分条件.故选:B【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.7、B【解析】解不等式确定集合,然后由补集、并集定义求解【详解】由题意或,故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型8、C【解析】令,则,将指数式化成对数式得、后,然后取绝对值作差比较可得【详解】令,则,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题9、B【解析】试题分析:由题意故选B考点:正态分布10、D【解析】先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.11、A【解析】化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.12、D【解析】求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用累加法求得数列的通项公式,由此求得的通项公式.【详解】由题,所以故答案为:【点睛】本小题主要考查累加法求数列的通项公式,属于基础题.14、2【解析】由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.15、【解析】只要算出直三棱柱的棱长即可,在中,利用即可得到关于x的方程,解方程即可解决.【详解】由已知,解得,如图所示,设底面等边三角形中心为,直三棱柱的棱长为x,则,故,即,解得,故三棱柱的侧面积为.故答案为:.【点睛】本题考查特殊柱体的外接球问题,考查学生的空间想象能力,是一道中档题.16、【解析】运用等比数列的通项公式,即可解得【详解】解:,故答案为:【点睛】本题考查等比数列的通项公式及应用,考查计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值为;极小值为;(2)见解析【解析】(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,可得到,即可证明结论成立.【详解】(1)函数的定义域为,所以当时,;当时,则的单调递增区间为和,单调递减区间为.故的极大值为;的极小值为.(2)证明:由(1)知,设函数,则,则在上恒成立,即在上单调递增,故,又,则,即在上恒成立.因为,所以,又,则,因为,且在上单调递减,所以,故.【点睛】本题考查函数的单调性与极值,考查了利用导数证明不等式,构造函数是解决本题的关键,属于难题.18、(1)见解析;(2)【解析】(1)X的可能取值为300,500,600,结合题意及表格数据计算对应概率,即得解;(2)由题意得,分,及,分别得到y与n的函数关系式,得到对应的分布列,分析即得解.【详解】(1)由题意:X的可能取值为300,500,600 故:六月份这种酸奶一天的需求量(单位:瓶)的分布列为300500600(2)由题意得.1°.当时,利润此时利润的分布列为.2.时,利润此时利润的分布列为.综上的数学期望的取值范围是.【点睛】本题考查了函数与概率统计综合,考查了学生综合分析,数据处理,转化划归,数学运算的能力,属于中档题.19、(1);(2).【解析】(1)只需分,三种情况讨论即可;(2)在区间上恒成立,转化为,只需求出即可.【详解】(1)当时,此时不等式无解;当时,由得;当时,由得,综上,不等式的解集为;(2)依题意,在区间上恒成立,则,当时,;当时,所以当时,由得或,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题.20、(1)证明见解析(2)【解析】(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.【详解】(1)证明:底面为菱形,底面,平面,又,平面,平面;(2)解:,为等边三角形,.底面,是直线与平面所成的角为,在中,由,解得.如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系.则,.,.设平面与平面的一个法向量分别为,.由,取,得;由,取,得.平面与平面所成锐二面角的余弦值为.【点睛】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,属于中档题21、(1)证明见解析(2)【解析】(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分 ,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,当时,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.当时,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.22、有的把握认为顾客购物体验的满意度与性别有关;.【解析】由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,从中随机抽取人,所有基本事件有:,共个其中仅有1人是女顾客的基本事件有:,共个所以获得纪念品的人中仅有人是女顾客的概率【点睛】本小题主要考查统计案例、卡方分布、概率等基本知识,考查概率统计基本思想以及抽象概括等能力和应用意识,属于中档题