欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    评价大联考2023年高考数学一模试卷含解析.doc

    • 资源ID:88310717       资源大小:1.97MB        全文页数:18页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    评价大联考2023年高考数学一模试卷含解析.doc

    2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若曲线在点处的切线方程为,则实数的取值为( )A-2B-1C1D22已知为锐角,且,则等于( )ABCD3若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD4已知,若方程有唯一解,则实数的取值范围是( )ABCD5已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()ABCD6已知三棱锥中,是等边三角形,则三棱锥的外接球的表面积为( )ABCD7甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人已知:甲不在远古村寨,也不在百里绝壁;乙不在原始森林,也不在远古村寨;“丙在远古村寨”是“甲在原始森林”的充分条件;丁不在百里绝壁,也不在远古村寨若以上语句都正确,则游玩千丈瀑布景点的同学是( )A甲B乙C丙D丁8设函数的导函数,且满足,若在中,则( )ABCD9执行如图所示的程序框图,则输出的值为( )ABCD10已知三棱锥中,为的中点,平面,则有下列四个结论:若为的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则在内轨迹的长度为1其中正确的个数是( )A1B1C3D411已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|1x2 D12已知集合,若,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为_14在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:甲校学生成绩的优秀率大于乙校学生成绩的优秀率;甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是_.15命题“对任意,”的否定是 16如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则ABC面积的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.18(12分)已知点为椭圆上任意一点,直线与圆 交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.19(12分)若不等式在时恒成立,则的取值范围是_.20(12分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围21(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.(1)求的值及该圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.22(10分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出函数的导数,利用切线方程通过f(0),求解即可;【详解】f (x)的定义域为(1,+),因为f(x)a,曲线yf(x)在点(0,f(0)处的切线方程为y2x,可得1a2,解得a1,故选:B【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力2、C【解析】由可得,再利用计算即可.【详解】因为,所以,所以.故选:C.【点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.3、D【解析】利用复数代数形式的乘除运算化简,再由实部为求得值【详解】解:在复平面内所对应的点在虚轴上,即故选D【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题4、B【解析】求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可【详解】解:令,则,则,故,如图示:由,得,函数恒过,由,可得,若方程有唯一解,则或,即或;当即图象相切时,根据,解得舍去),则的范围是,故选:【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题5、C【解析】由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题6、D【解析】根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.7、D【解析】根据演绎推理进行判断【详解】由可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁故选:D【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础8、D【解析】根据的结构形式,设,求导,则,在上是增函数,再根据在中,得到,利用余弦函数的单调性,得到,再利用的单调性求解.【详解】设,所以 ,因为当时,即,所以,在上是增函数,在中,因为,所以,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.9、B【解析】列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.10、C【解析】由线面垂直的性质,结合勾股定理可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.11、B【解析】试题分析:由集合A中的函数,得到,解得:,集合,由集合B中的函数,得到,集合,则,故选B考点:交集及其运算12、A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线 与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线 与圆相离时, 恒为锐角,故,解得 从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.14、【解析】根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故正确.故答案为:.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.15、存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”考点:命题的否定16、【解析】先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在BOD中,BD2,易知O的轨迹为阿氏圆,其半径,故故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为【解析】(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,则当时,取得最大值,最大值为.【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.18、(1)证明见解析;(2)是,理由见解析.【解析】(1)根据判别式即可证明(2)根据向量的数量积和韦达定理即可证明,需要分类讨论,【详解】解:(1)当时直线方程为或,直线与椭圆相切.当时,由得,由题知,即,所以.故直线与椭圆相切.(2)设,当时,所以,即.当时,由得,则,.因为 . 所以,即.故为定值.【点睛】本题考查椭圆的简单性质,考查向量的运算,注意直线方程和椭圆方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题19、【解析】原不等式等价于在恒成立,令,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,则为上的增函数,故.故.故答案为:.【点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.20、 (1) (2) 【解析】(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案【详解】(1)不等式或或,解得或,即x>0,所以原不等式的解集为(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即所以实数a的取值范围是【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题21、(1),圆的方程为:.(2)答案见解析【解析】(1)根据题意,可知点的坐标为,即可求出的值,即可求出该圆的方程;(2)由题易知,直线的斜率存在且不为0,设的方程为,与抛物线联立方程组,根据,求得,化简解得,进而求得点的坐标为,分别求出,利用向量的数量积为0,即可证出.【详解】解:(1)易知点的坐标为,所以,解得.又圆的圆心为,所以圆的方程为.(2)证明易知,直线的斜率存在且不为0,设的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点的坐标为.所以,.故.【点睛】本题考查抛物线的标准方程和圆的方程,考查直线和抛物线的位置关系,利用联立方程组、求交点坐标以及向量的数量积,考查解题能力和计算能力.22、(1)(2)证明见解析【解析】(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知 ,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,且,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.

    注意事项

    本文(评价大联考2023年高考数学一模试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开