重庆市渝中学区巴蜀中学2023年中考数学四模试卷含解析.doc
-
资源ID:88310805
资源大小:471.50KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
重庆市渝中学区巴蜀中学2023年中考数学四模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,ABC纸片中,A56,C88°沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD则BDE的度数为( )A76°B74°C72°D70°2在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”已知O是以原点为圆心,半径为 圆,则O的“整点直线”共有( )条A7B8C9D103方程5x2y9与下列方程构成的方程组的解为的是()Ax2y1B3x2y8C5x4y3D3x4y84小轩从如图所示的二次函数y=ax2+bx+c(a0)的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有A2个B3个C4个D5个5我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺设绳索长x尺,竿长y尺,则符合题意的方程组是()ABCD6下列运算正确的是()Aa3a2=a6B(x3)3=x6Cx5+x5=x10Da8÷a4=a47一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是( )ABCD8如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD9计算2a23a2的结果是( )A5a4B6a2C6a4D5a210下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3÷a=a3D(a5)2=a7二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,ACB=90°,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_12在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_个.13如图,ABC与DEF位似,点O为位似中心,若AC3DF,则OE:EB_14化简:=_;=_;=_15如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120°,这个扇形的面积为 16如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_米.三、解答题(共8题,共72分)17(8分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号)18(8分)若关于的方程无解,求的值.19(8分)已知:如图,ABAC,点D是BC的中点,AB平分DAE,AEBE,垂足为E求证:ADAE20(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC的三个顶点的位置如图所示现将ABC平移,使点A变换为点D,点E、F分别是B、C的对应点请画出平移后的DEF连接AD、CF,则这两条线段之间的关系是_21(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?22(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PDPG,DFPG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF(1)求证:DFPG;(2)若PC1,求四边形PEFD的面积23(12分)如图,O为直线AB上一点,AOC=50°,OD平分AOC,DOE=90°写出图中小于平角的角求出BOD的度数小明发现OE平分BOC,请你通过计算说明道理24已知:关于x的一元二次方程kx2(4k+1)x+3k+30(k是整数)(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】直接利用三角形内角和定理得出ABC的度数,再利用翻折变换的性质得出BDE的度数【详解】解:A=56°,C=88°,ABC=180°-56°-88°=36°,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,CBD=DBE=18°,C=DEB=88°,BDE=180°-18°-88°=74°故选:B【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键2、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.3、D【解析】试题分析:将x与y的值代入各项检验即可得到结果解:方程5x+2y=9与下列方程构成的方程组的解为的是3x4y=1故选D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值4、D【解析】试题分析:如图,抛物线开口方向向下,a1对称轴x,1ab1故正确如图,当x=1时,y1,即a+b+c1故正确如图,当x=1时,y=ab+c1,2a2b+2c1,即3b2b+2c1b+2c1故正确如图,当x=1时,y1,即ab+c1,抛物线与y轴交于正半轴,c1b1,cb1(ab+c)+(cb)+2c1,即a2b+4c1故正确如图,对称轴,则故正确综上所述,正确的结论是,共5个故选D5、A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组【详解】设索长为x尺,竿子长为y尺,根据题意得:故选A【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键6、D【解析】各项计算得到结果,即可作出判断【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键7、B【解析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1故选B【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|8、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键9、D【解析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a23a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.10、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图12、1.【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,=,解得:x=1,故白球的个数为1个故答案为:1【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键13、1:2【解析】ABC与DEF是位似三角形,则DFAC,EFBC,先证明OACODF,利用相似比求得AC3DF,所以可求OE:OBDF:AC1:3,据此可得答案【详解】解:ABC与DEF是位似三角形,DFAC,EFBCOACODF,OE:OBOF:OCOF:OCDF:ACAC3DFOE:OBDF:AC1:3,则OE:EB1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线14、4 5 5 【解析】根据二次根式的性质即可求出答案【详解】原式=4;原式=5;原式=5,故答案为:4;5;5【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型15、300【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可底面圆的面积为100, 底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r, 则=20, 解得:母线长为30,扇形的面积为rl=×10×30=300考点:(1)、圆锥的计算;(2)、扇形面积的计算16、1【解析】根据题意,画出示意图,易得:RtEDCRtFDC,进而可得;即DC2=ED?FD,代入数据可得答案【详解】根据题意,作EFC,树高为CD,且ECF=90°,ED=3,FD=12,易得:RtEDCRtDCF,有,即DC2=ED×FD,代入数据可得DC2=31,DC=1,故答案为1三、解答题(共8题,共72分)17、100米. 【解析】【分析】如图,作PCAB于C,构造出RtPAC与RtPBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.【详解】如图,过P点作PCAB于C,由题意可知:PAC=60°,PBC=30°,在RtPAC中,tanPAC=,AC=PC,在RtPBC中,tanPBC=,BC=PC,AB=AC+BC=PC+PC=10×40=400,PC=100,答:建筑物P到赛道AB的距离为100米【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.18、【解析】分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1(1)把x=0代入(a+2)x=1,a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解综上所述,当a=1或a=-2时,原方程无解故答案为a=1或a=-2点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形19、见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证ADBAEB即可试题解析:AB=AC,点D是BC的中点,ADBC,ADB=90°.AEEB,E=ADB=90°.AB平分DAE,BAD=BAE.在ADB和AEB中,E=ADB,BAD=BAE,AB=AB,ADBAEB(AAS),AD=AE.20、见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是ADCF,且ADCF21、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为,设甲种商品按原销售单价销售a件,则,解得,答:甲种商品按原销售单价至少销售20件【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.22、(1)证明见解析;(2)1.【解析】作PMAD,在四边形ABCD和四边形ABPM证ADPM;DFPG,得出GDH+DGH90°,推出ADFMPG;还有两个直角即可证明ADFMPG,从而得出对应边相等(2)由已知得,DG2PC2;ADFMPG得出DFPD;根据旋转,得出EPG90°,PEPG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:四边形ABCD为正方形,ADAB,四边形ABPM为矩形,ABPM,ADPM,DFPG,DHG90°,GDH+DGH90°,MGP+MPG90°,GDHMPG,在ADF和MPG中,ADFMPG(ASA),DFPG;(2)作PMDG于M,如图,PDPG,MGMD,四边形ABCD为矩形,PCDM为矩形,PCMD,DG2PC2;ADFMPG(ASA),DFPG,而PDPG,DFPD,线段PG绕点P逆时针旋转90°得到线段PE,EPG90°,PEPG,PEPDDF,而DFPG,DFPE,即DFPE,且DFPE,四边形PEFD为平行四边形,在RtPCD中,PC1,CD3,PD,DFPGPD,四边形CDMP是矩形,PMCD3,MDPC1,PDPG,PMAD,MGMD1,DG2,GDHMPG,DHGPMG90°,DHGPMG,GH,PHPGGH,四边形PEFD的面积DFPH×1【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值23、(1)答案见解析 (2)155° (3)答案见解析【解析】(1)根据角的定义即可解决;(2)根据BOD=DOC+BOC,首先利用角平分线的定义和邻补角的定义求得DOC和BOC即可;(3)根据COE=DOEDOC和BOE=BODDOE分别求得COE与BOE的度数即可说明【详解】(1)图中小于平角的角AOD,AOC,AOE,DOC,DOE,DOB,COE,COB,EOB(2)因为AOC=50°,OD平分AOC,所以DOC=25°,BOC=180°AOC=180°50°=130°,所以BOD=DOC+BOC=155°(3)因为DOE=90°,DOC=25°,所以COE=DOEDOC=90°25°=65°又因为BOE=BODDOE=155°90°=65°,所以COE=BOE,所以OE平分BOC【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键24、(3)证明见解析(3)3或3【解析】(3)根据一元二次方程的定义得k2,再计算判别式得到(3k3)3,然后根据非负数的性质,即k的取值得到2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【详解】证明:(3)=(4k+3)34k(3k+3)=(3k3)3k为整数,(3k3)32,即2方程有两个不相等的实数根(3)解:方程kx3(4k+3)x+3k+3=2为一元二次方程,k2kx3(4k+3)x+3k+3=2,即kx(k+3)(x3)=2,x3=3,方程的两个实数根都是整数,且k为整数,k=3或3【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与的关系是解答此题的关键.