重庆市綦江区2023年中考数学仿真试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1平面直角坐标系中,若点A(a,b)在第三象限内,则点B(b,a)所在的象限是()A第一象限B第二象限C第三象限D第四象限2如图,ABC中AB两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC,且ABC与ABC的位似比为2:1设点B的对应点B的横坐标是a,则点B的横坐标是()ABCD3如图,在已知的 ABC中,按以下步骤作图:分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;作直线MN交AB于点D,连接CD,则下列结论正确的是()ACD+DB=ABBCD+AD=ABCCD+AC=ABDAD+AC=AB4如图,已知函数y=与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+0的解集是()Ax3B3x0Cx3或x0Dx05已知点,为是反比例函数上一点,当时,m的取值范围是( )ABCD6函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx37如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D48北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A0.72×106平方米B7.2×106平方米C72×104平方米D7.2×105平方米9如图,AB是O的切线,半径OA=2,OB交O于C,B=30°,则劣弧的长是()ABCD10三个等边三角形的摆放位置如图,若360°,则12的度数为( ) A90°B120°C270°D360°11苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元12下列图形中,是中心对称但不是轴对称图形的为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13=_14计算:的结果为_15为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_16如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到_边上,小球P与正方形的边完成第5次碰撞所经过的路程为_17如图,在ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若A=32°,则CDB的大小为_度18如图,在正方形中,对角线与相交于点,为上一点,为的中点若的周长为18,则的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) 阅读我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”理解如图1,RtABC是“中边三角形”,C=90°,AC和BD是“对应边”,求tanA的值;探究如图2,已知菱形ABCD的边长为a,ABC=2,点P,Q从点A同时出发,以相同速度分别沿折线ABBC和ADDC向终点C运动,记点P经过的路程为s当=45°时,若APQ是“中边三角形”,试求的值20(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积21(6分)已知抛物线y=x24x+c经过点A(2,0)(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C若B、C都在抛物线上,求m的值;若点C在第四象限,当AC2的值最小时,求m的值22(8分)如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,CEAD,交AD的延长线于点E(1)求证:BDC=A;(2)若CE=4,DE=2,求AD的长23(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?24(10分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?25(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为 ;(2)补全条形统计图(3)扇形统计图中,类所在扇形的圆心角的度数为 ;(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名. 26(12分)解分式方程: - = 27(12分)先化简,再求值:(1)÷,其中x1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限详解:点A在第三象限, a0,b0, 即a0,b0, 点B在第四象限,故选D点睛:本题主要考查的是象限中点的坐标特点,属于基础题型明确各象限中点的横纵坐标的正负性是解题的关键2、D【解析】设点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似变换的概念列式计算【详解】设点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)a+1,解得x(a+3),故选:D【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键3、B【解析】作弧后可知MNCB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MNCB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.4、C【解析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+1的解集【详解】函数y=与函数y=ax2+bx的交点P的纵坐标为1,1=,解得:x=3,P(3,1),故不等式ax2+bx+1的解集是:x3或x1故选C【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标5、A【解析】直接把n的值代入求出m的取值范围【详解】解:点P(m,n),为是反比例函数y=-图象上一点,当-1n-1时,n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1m1故选A【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键6、D【解析】由题意得,x10,解得x1故选D7、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30°,OAG=AOG=30°,GOE=90°-AOG=90°-30°=60°,OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.8、D【解析】试题分析:把一个数记成a×10n(1a<10,n整数位数少1)的形式,叫做科学记数法此题可记为12×105平方米考点:科学记数法9、C【解析】由切线的性质定理得出OAB=90°,进而求出AOB=60°,再利用弧长公式求出即可【详解】AB是O的切线,OAB=90°,半径OA=2,OB交O于C,B=30°,AOB=60°,劣弧AC的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.10、B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用1,2,3表示出ABC各角的度数,再根据三角形内角和定理即可得出结论【详解】图中是三个等边三角形,3=60°,ABC=180°-60°-60°=60°,ACB=180°-60°-2=120°-2,BAC=180°-60°-1=120°-1,ABC+ACB+BAC=180°,60°+(120°-2)+(120°-1)=180°,1+2=120°故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键11、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.12、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C考点:中心对称图形;轴对称图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+22=1故答案为:1点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.14、【解析】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式=3-5=2 点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.15、17【解析】8是出现次数最多的,众数是8,这组数据从小到大的顺序排列,处于中间位置的两个数都是9,中位数是9,所以中位数与众数之和为8+9=17.故答案为17小时.16、AB, 【解析】根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度【详解】根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,第二次碰撞点为G,在AB上,且AG=AB,第三次碰撞点为H,在AD上,且AH=AD,第四次碰撞点为M,在DC上,且DM=DC,第五次碰撞点为N,在AB上,且BN=AB,第六次回到E点,BE=BC.由勾股定理可以得出EF=,FG= ,GH= ,HM=,MN= ,NE= ,故小球第5次经过的路程为:+ + + = ,故答案为AB, .【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.17、1【解析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74°,根据等腰三角形的性质以及三角形外角的性质在BCD中可求得CDB=CBD=ACB=1°【详解】AB=AC,A=32°,ABC=ACB=74°,又BC=DC,CDB=CBD=ACB=1°,故答案为1【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用18、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、tanA=;综上所述,当=45°时,若APQ是“中边三角形”,的值为或【解析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得BC=x,可得tanA=(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得AEFCEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QNAP于N,可得tanAPQ=,tanAPE=,=,【详解】解:理解AC和BD是“对应边”,AC=BD,设AC=2x,则CD=x,BD=2x,C=90°,BC=x,tanA=;探究若=45°,当点P在AB上时,APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,PC=QC,ACB=ACD,AC是QP的垂直平分线,AP=AQ,CAB=ACP,AEF=CEP,AEFCEP,=,PE=CE,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QNAP于N,MN=AN=PM=QM,QN=MN,ntanAPQ=,taAPE=,=,综上所述,当=45°时,若APQ是“中边三角形”,的值为或【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.20、(1)见详解;(2)x=18;(3) 416 m2.【解析】(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得【详解】(1)根据题意知,yx;(2)根据题意,得(x)x384,解得x18或x32.墙的长度为24 m,x18.(3)设菜园的面积是S,则S(x)xx2x (x25)2.0,当x25时,S随x的增大而增大.x24,当x24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题21、(1)抛物线解析式为y=x24x+12,顶点坐标为(2,16);(2)m=2或m=2;m的值为 【解析】分析:(1)把点A(2,0)代入抛物线y=x24x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)由B(m,n)在抛物线上可得m24m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(m,n),又因C落在抛物线上,可得m2+4m+12=n,即m24m12=n,所以m2+4m+12=m24m12,解方程求得m的值即可;已知点C(m,n)在第四象限,可得m0,n0,即m0,n0,再由抛物线顶点坐标为(2,16),即可得0n16,因为点B在抛物线上,所以m24m+12=n,可得m2+4m=n+12,由A(2,0),C(m,n),可得AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,所以当n=时,AC2有最小值,即m24m+12=,解方程求得m的值,再由m0即可确定m的值详解:(1)抛物线y=x24x+c经过点A(2,0),48+c=0,即c=12,抛物线解析式为y=x24x+12=(x+2)2+16,则顶点坐标为(2,16);(2)由B(m,n)在抛物线上可得:m24m+12=n,点B关于原点的对称点为C,C(m,n),C落在抛物线上,m2+4m+12=n,即m24m12=n,解得:m2+4m+12=m24m12,解得:m=2或m=2;点C(m,n)在第四象限,m0,n0,即m0,n0,抛物线顶点坐标为(2,16),0n16,点B在抛物线上,m24m+12=n,m2+4m=n+12,A(2,0),C(m,n),AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,当n=时,AC2有最小值,m24m+12=,解得:m=,m0,m=不合题意,舍去,则m的值为点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.22、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是O切线,得到ODC=90°,根据AB为O的直径,得到ADB=90°,等量代换得到BDC=ADO,根据等腰直角三角形的性质得到ADO=A,即可得到结论;(2)根据垂直的定义得到E=ADB=90°,根据平行线的性质得到DCE=BDC,根据相似三角形的性质得到,解方程即可得到结论试题解析:(1)连接OD, CD是O切线, ODC=90°, 即ODB+BDC=90°,AB为O的直径, ADB=90°, 即ODB+ADO=90°, BDC=ADO,OA=OD, ADO=A, BDC=A;(2)CEAE, E=ADB=90°, DBEC, DCE=BDC, BDC=A, A=DCE,E=E, AECCED, , EC2=DEAE, 11=2(2+AD), AD=1考点:(1)切线的性质;(2)相似三角形的判定与性质23、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x,根据题意列方程得:,解得x1=0.1,x2=1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.24、1平方米【解析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论【详解】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:=11,解得:x=500,经检验,x=500是原方程的解,1.2x=1答:实际平均每天施工1平方米【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程25、 (1)300;(2)见解析;(3)108°;(4)约有840名.【解析】(1)根据A种类人数及其占总人数百分比可得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360°乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案【详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为300×20%=60(人),补全条形图如下:(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)2000×=840,估计该校喜爱C,D两类校本课程的学生共有840名【点睛】本题考查条形统计图、扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解题关键条形统计图能清楚地表示出每个项目的数据26、方程无解【解析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可【详解】解:方程的两边同乘(x1)(x1),得:, ,此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:去分母;解整式方程;验根.27、.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值【详解】原式=当x=1时,原式=【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键