湖南省邵阳市黄亭市镇中学2023年中考数学模试卷含解析.doc
-
资源ID:88311118
资源大小:929KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省邵阳市黄亭市镇中学2023年中考数学模试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,一次函数y1xb与一次函数y2kx4的图象交于点P(1,3),则关于x的不等式xbkx4的解集是()Ax2Bx0Cx1Dx12已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba0且4a+b=0Ca0且2a+b=0Da0且2a+b=03下列说法中,正确的是()A不可能事件发生的概率为0B随机事件发生的概率为C概率很小的事件不可能发生D投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4若关于的一元二次方程有两个不相等的实数根,则的取值范围( )ABC且D5计算tan30°的值等于( )A B C D6如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )ABCD7下列各式中计算正确的是()Ax3x3=2x6B(xy2)3=xy6C(a3)2=a5Dt10÷t9=t8关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,9如图,ABCD,DEBE,BF、DF分别为ABE、CDE的角平分线,则BFD()A110°B120°C125°D135°10不等式组 中两个不等式的解集,在数轴上表示正确的是 ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式:=_12如图,AB是O的直径,点C在O上,AE是O的切线,A为切点,连接BC并延长交AE于点D若AOC=80°,则ADB的度数为( )A40° B50° C60° D20°13计算的结果是_.14如图,直线与双曲线(k0)相交于A(1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_.15化简:_16已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_.三、解答题(共8题,共72分)17(8分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PDPG,DFPG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF(1)求证:DFPG;(2)若PC1,求四边形PEFD的面积18(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量(件)与时间(时)的函数图象如图所示(1)求甲组加工零件的数量y与时间之间的函数关系式(2)求乙组加工零件总量的值(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?19(8分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 20(8分)如图,在中,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.21(8分)观察下列等式:1×5+4=32;2×6+4=42;3×7+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立22(10分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域(菱形),区域(4个全等的直角三角形),剩余空白部分记为区域;点为矩形和菱形的对称中心,为了美观,要求区域的面积不超过矩形面积的,若设米.甲乙丙单价(元/米2)(1)当时,求区域的面积.计划在区域,分别铺设甲,乙两款不同的深色瓷砖,区域铺设丙款白色瓷砖,在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时_,_.23(12分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0)(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PCPD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由24先化简,再求值:1+÷(1),其中x=2cos30°+tan45°参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:当x1时,x+bkx+4,即不等式x+bkx+4的解集为x1故选C考点:一次函数与一元一次不等式2、A【解析】由图像经过点(0,m)、(4、m)可知对称轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m)、(4、m)对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.3、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A考点:随机事件4、C【解析】根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论【详解】解:关于x的一元二次方程有两个不相等的实数根, ,解得:k<1且k1故选:C【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键5、C【解析】tan30°= 故选C6、C【解析】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C7、D【解析】试题解析:A、 原式计算错误,故本选项错误;B、 原式计算错误,故本选项错误;C、 原式计算错误,故本选项错误;D、 原式计算正确,故本选项正确;故选D点睛:同底数幂相除,底数不变,指数相减.8、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键9、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180°,CDE+DEG=180°,ABE+BED+CDE=360°又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE=(ABE+CDE)=(360°90°)=135°,BFD=360°FBEFDEBED=360°135°90°=135°故选D【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补解决问题的关键是作平行线10、B【解析】由得,x<3,由得,x1,所以不等式组的解集为:1x<3,在数轴上表示为:,故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、x(y+2)(y-2)【解析】原式提取x,再利用平方差公式分解即可【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键12、B【解析】试题分析:根据AE是O的切线,A为切点,AB是O的直径,可以先得出BAD为直角再由同弧所对的圆周角等于它所对的圆心角的一半,求出B,从而得到ADB的度数由题意得:BAD=90°,B=AOC=40°,ADB=90°-B=50°故选B考点:圆的基本性质、切线的性质13、【解析】原式= ,故答案为.14、(0,)【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(1,3),把点A坐标代入双曲线的解析式得3=k,即k=3,联立两函数解析式得:,解得:,即点B坐标为:(3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,)考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题15、【解析】直接利用二次根式的性质化简求出答案【详解】,故答案为.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键16、16或1【解析】题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1故答案为:16或1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键三、解答题(共8题,共72分)17、(1)证明见解析;(2)1.【解析】作PMAD,在四边形ABCD和四边形ABPM证ADPM;DFPG,得出GDH+DGH90°,推出ADFMPG;还有两个直角即可证明ADFMPG,从而得出对应边相等(2)由已知得,DG2PC2;ADFMPG得出DFPD;根据旋转,得出EPG90°,PEPG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:四边形ABCD为正方形,ADAB,四边形ABPM为矩形,ABPM,ADPM,DFPG,DHG90°,GDH+DGH90°,MGP+MPG90°,GDHMPG,在ADF和MPG中,ADFMPG(ASA),DFPG;(2)作PMDG于M,如图,PDPG,MGMD,四边形ABCD为矩形,PCDM为矩形,PCMD,DG2PC2;ADFMPG(ASA),DFPG,而PDPG,DFPD,线段PG绕点P逆时针旋转90°得到线段PE,EPG90°,PEPG,PEPDDF,而DFPG,DFPE,即DFPE,且DFPE,四边形PEFD为平行四边形,在RtPCD中,PC1,CD3,PD,DFPGPD,四边形CDMP是矩形,PMCD3,MDPC1,PDPG,PMAD,MGMD1,DG2,GDHMPG,DHGPMG90°,DHGPMG,GH,PHPGGH,四边形PEFD的面积DFPH×1【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值18、 (1)见解析(2)300(3)2小时【解析】解:(1)设甲组加工的零件数量y与时间x的函数关系式为根据题意,得,解得所以,甲组加工的零件数量y与时间x的函数关系式为:. (2)当时,因为更换设备后,乙组工作效率是原来的2倍,所以,解得 (3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为当0x2时,解得舍去当2<x2.8时,解得舍去当2.8<x4.8时,解得所以,经过3小时恰好装满第1箱当3<x4.8时,解得舍去当4.8<x6时解得因为53=2,所以,再经过2小时恰好装满第2箱19、(1)y=;y=x;(2);(1)2x0或x1;【解析】(1)过A作AMx轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可(1)根据A、B的横坐标结合图象即可得出答案【详解】解:(1)过A作AMx轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=把B(2,n)代入反比例函数的解析式得:n=,即B的坐标是(2,),把A、B的坐标代入y=ax+b得:,解得:k=b=,即一次函数的解析式是y=x(2)连接OB,y=x,当x=0时,y=,即OD=,AOB的面积是SBOD+SAOD=××2+××1=(1)一次函数的值大于反比例函数的值时x的取值范围是2x0或x1,故答案为2x0或x1【点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.20、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论【详解】(1)理由如下,垂直平分,即.(2)连接,设,由(1)得,又,解得,即【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键21、6×10+4=82 48×52+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:n×(n+4)+4=n2+4n+4=(n+2)2,n×(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法22、(1)8m2;(2)68m2;(3) 40,8【解析】(1)根据中心对称图形性质和,可得,即可解当时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,求出自变量的取值范围,再根据二次函数的增减性即可解答;(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.【详解】(1) 为长方形和菱形的对称中心,当时,(2),-, 解不等式组得,结合图像,当时,随的增大而减小.当时, 取得最大值为(3)当时,S=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.23、 (1) y=(x1)2+9 ,D(1,9); (2)p=1;(3)存在点Q(2,1)使QBC的面积最大【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PCPD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,m2+2m+1)(0m4),然后用含m的代数式表达出BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)抛物线y=ax2+2x+1经过点B(4,0),16a+1+1=0,a=1,抛物线的解析式为y=x2+2x+1=(x1)2+9,D(1,9);(2)当x=0时,y=1,C(0,1)设直线CD的解析式为y=kx+b将点C、D的坐标代入得:,解得:k=1,b=1,直线CD的解析式为y=x+1当y=0时,x+1=0,解得:x=1,直线CD与x轴的交点坐标为(1,0)当P在直线CD上时,|PCPD|取得最大值,p=1;(3)存在,理由:如图,由(2)知,C(0,1),B(4,0),直线BC的解析式为y=2x+1,过点Q作QEy轴交BC于E,设Q(m,m2+2m+1)(0m4),则点E的坐标为:(m,2m+1),EQ=m2+2m+1(2m+1)=m2+4m,SQBC=(m2+4m)×4=2(m2)2+1,m=2时,SQBC最大,此时点Q的坐标为:(2,1)点睛:(1)解第2小题时,知道当点P在直线CD上时,|PCPD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,m2+2m+1)(0m4),并结合点B、C的坐标把BCQ的面积用含m的代数式表达出来.24、 【解析】先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果【详解】原式= =1+ =1+= 当x=2cos30°+tan45°=2×+1=+1时=【点睛】本题主要考查了分式的加减及锐角三角函数值解决本题的关键是掌握分式的运算法则和运算顺序