湖南省长沙市田家炳实验中学2023年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A0.637×105 B6.37×106 C63.7×107 D6.37×1072估计-1的值在( )A0到1之间B1到2之间C2到3之间D3至4之间3点A(1,),B(2,)在反比例函数的图象上,则,的大小关系是( )AB=CD不能确定4有一种球状细菌的直径用科学记数法表示为2.16×103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米5下列实数0,其中,无理数共有()A1个B2个C3个D4个6一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;慢车速度为46km/h; A、B两地相距828km;快车从A地出发到B地用了14小时A2个B3个C4个D5个7如图是半径为2的半圆,点C是弧AB的中点,现将半圆如图方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )ABC2+D28如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )A点MB点NC点PD点Q9函数y=的自变量x的取值范围是( )Ax2Bx2Cx2Dx210将直线y=x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A4 B4 C2 D2二、填空题(共7小题,每小题3分,满分21分)11因式分解:4ax24ay2=_12已知一个斜坡的坡度,那么该斜坡的坡角的度数是_13一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_14函数y中,自变量x的取值范围是_15如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是_海里(结果精确到个位,参考数据:,)16某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用_;依据是_(答案不唯一,理由支撑选项即可)17如图,在等腰中,点在以斜边为直径的半圆上,为的中点当点沿半圆从点运动至点时,点运动的路径长是_三、解答题(共7小题,满分69分)18(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;(2)若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率19(5分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率20(8分)如图,一次函数y=x+的图象与反比例函数y=(k0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积为1(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标21(10分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题已知,ABC中,ABAC,BAC,点D、E在边BC上,且DAE(1)如图1,当60°时,将AEC绕点A顺时针旋转60°到AFB的位置,连接DF,求DAF的度数;求证:ADEADF;(2)如图2,当90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当120°,BD4,CE5时,请直接写出DE的长为 22(10分)如图,ABC中AB=AC,请你利用尺规在BC边上求一点P,使ABCPAC不写画法,(保留作图痕迹).23(12分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;连接PO,交AC于点E,求的最大值;过点P作PFAC,垂足为点F,连接PC,是否存在点P,使PFC中的一个角等于CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.24(14分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37×106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】试题分析:23,1-12,即-1在1到2之间,故选B考点:估算无理数的大小3、C【解析】试题分析:对于反比例函数y=,当k0时,在每一个象限内,y随x的增大而减小,根据题意可得:12,则考点:反比例函数的性质4、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16×103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、B【解析】根据无理数的概念可判断出无理数的个数【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数6、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答【详解】解:两车在276km处相遇,此时快车行驶了4个小时,故错误慢车0时出发,快车2时出发,故正确快车4个小时走了276km,可求出速度为69km/h,错误慢车6个小时走了276km,可求出速度为46km/h,正确慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确快车2时出发,14时到达,用了12小时,错误故答案选B【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键7、D【解析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OCMN,且OP=PC=1,在RtMOP中,OM=2,OP=1,cosPOM=,AC=,POM=60°,MN=2MP=2,AOB=2AOC=120°,则图中阴影部分的面积=S半圆-2S弓形MCN=××22-2×(-×2×1)=2- ,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.8、C【解析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5OA=OM=ON=OQOP则点A不经过点P故选C.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.9、D【解析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:函数y=有意义,x-20,即x2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.10、A【解析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.二、填空题(共7小题,每小题3分,满分21分)11、4a(xy)(x+y)【解析】首先提取公因式4a,再利用平方差公式分解因式即可【详解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y)故答案为4a(x-y)(x+y)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键12、【解析】坡度=坡角的正切值,据此直接解答【详解】解:,坡角=30°【点睛】此题主要考查学生对坡度及坡角的理解及掌握13、37【解析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.14、x1【解析】分析:根据二次根式有意义的条件解答即可.详解:二次根式有意义,被开方数为非负数,1 -x0,解得x1.故答案为x1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.15、1【解析】作BDAC于点D,在直角ABD中,利用三角函数求得BD的长,然后在直角BCD中,利用三角函数即可求得BC的长【详解】CBA=25°+50°=75°,作BDAC于点D,则CAB=(90°70°)+(90°50°)=20°+40°=60°,ABD=30°,CBD=75°30°=45°,在直角ABD中,BD=ABsinCAB=20×sin60°=20×=10,在直角BCD中,CBD=45°,则BC=BD=10×=1010×2.4=1(海里),故答案是:1【点睛】本题考查了解直角三角形的应用方向角问题,正确求得CBD以及CAB的度数是解决本题的关键16、A A的平均成绩高于B平均成绩 【解析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,A比B更优秀,如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.17、【解析】取的中点,取的中点,连接,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.【详解】解:如图,取的中点,取的中点,连接,在等腰中,点在以斜边为直径的半圆上,为的中位线,当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,弧长,故答案为:.【点睛】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.三、解答题(共7小题,满分69分)18、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比19、(1)36 , 40, 1;(2)【解析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数(2)画出树状图,根据概率公式求解即可【详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人;训练后篮球定时定点投篮平均每个人的进球数是=1,故答案为:36,40,1(2)三名男生分别用A1,A2,A3表示,一名女生用B表示根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M) 的结果有6种,P(M)=20、(1) (2)(0,)【解析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A,连接AB,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值AB的长;利用待定系数法求出直线AB的解析式,得到它与y轴的交点,即点P的坐标【详解】(1)反比例函数 y= =(k0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M, |k|=1,k0,k=2,故反比例函数的解析式为:y=;(2)作点 A 关于 y 轴的对称点 A,连接 AB,交 y 轴于点 P,则 PA+PB 最小由,解得,或,A(1,2),B(4,),A(1,2),最小值 AB= =,设直线 AB 的解析式为 y=mx+n,则 ,解得,直线 AB 的解析式为 y= ,x=0 时,y= ,P 点坐标为(0,)【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键21、(1)30°见解析(2)BD2+CE2DE2(3)【解析】(1)利用旋转的性质得出FAB=CAE,再用角的和即可得出结论;利用SAS判断出ADEADF,即可得出结论;(2)先判断出BF=CE,ABF=ACB,再判断出DBF=90°,即可得出结论;(3)同(2)的方法判断出DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论【详解】解:(1)由旋转得,FABCAE,BAD+CAEBACDAE60°30°30°,DAFBAD+BAFBAD+CAE30°;由旋转知,AFAE,BAFCAE,BAF+BADCAE+BADBACDAEDAE,在ADE和ADF中,ADEADF(SAS);(2)BD2+CE2DE2,理由:如图2,将AEC绕点A顺时针旋转90°到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,ABAC,BAC90°,ABCACB45°,DBFABC+ABFABC+ACB90°,根据勾股定理得,BD2+BF2DF2,即:BD2+CE2DE2;(3)如图3,将AEC绕点A顺时针旋转90°到AFB的位置,连接DF,BFCE,ABFACB,由(1)知,ADEADF,DEDF,BFCE5,ABAC,BAC90°,ABCACB30°,DBFABC+ABFABC+ACB60°,过点F作FMBC于M,在RtBMF中,BFM90°DBF30°,BF5,BD4,DMBDBM,根据勾股定理得, ,DEDF,故答案为【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键22、见解析【解析】根据题意作CBA=CAP即可使得ABCPAC.【详解】如图,作CBA=CAP,P点为所求. 【点睛】此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.23、(1);(2)有最大值1;(2,3)或(,)【解析】(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据勾股定理的逆定理得到ABC是以ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,PCF=2BAC=DGC+CDG,情况二,FPC=2BAC,解直角三角形即可得到结论【详解】(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得,抛物线的解析是为; (2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,直线PNy轴,PEMOEC,把x=0代入y=-x+2,得y=2,即OC=2,设点P(x,-x2+x+2),则点M(x,-x+2),PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,=,0x4,当x=2时,=有最大值1A(4,0),B(-1,0),C(0,2),AC=2,BC=,AB=5,AC2+BC2=AB2,ABC是以ACB为直角的直角三角形,取AB的中点D,D(,0),DA=DC=DB=,CDO=2BAC,tanCDO=tan(2BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,PCF=2BAC=PGC+CPG,CPG=BAC,tanCPG=tanBAC=,即,令P(a,-a2+a+2),PR=a,RC=-a2+a,a1=0(舍去),a2=2,xP=2,-a2+a+2=3,P(2,3)情况二,FPC=2BAC,tanFPC=,设FC=4k,PF=3k,PC=5k,tanPGC=,FG=6k,CG=2k,PG=3k,RC=k,RG=k,PR=3k-k=k,a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),综上所述:P点坐标是(2,3)或(,)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏24、(1)见解析;(2) 【解析】(1)根据题意作出图形即可;(2)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90°,A=90°,ADP+APD=APD+BPD=90°,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP= BDPB=ABAP=6AP=4,AP=2;PD=2,BD=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD=2,PQ垂直平分DD,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键