湖南省长沙市麓山国际实验校2023年中考押题数学预测卷含解析.doc
-
资源ID:88311311
资源大小:713.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
湖南省长沙市麓山国际实验校2023年中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A B C D2甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A B C D3用配方法解方程时,可将方程变形为( )ABCD4世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6×101B5.6×102C5.6×103D0.56×101523的相反数是()A8B8C6D66如图,已知ABC中,ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )AB4CD7小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示有下列结论;A,B两城相距300 km;小路的车比小带的车晚出发1 h,却早到1 h;小路的车出发后2.5 h追上小带的车;当小带和小路的车相距50 km时,t或t.其中正确的结论有()ABCD8甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个9如图,已知ABC,DCE,FEG,HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD10如图1,一个扇形纸片的圆心角为90°,半径为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()ABCD二、填空题(共7小题,每小题3分,满分21分)11 如图,已知,要使,还需添加一个条件,则可以添加的条件是 (只写一个即可,不需要添加辅助线)12已知、为两个连续的整数,且,则=_13如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去若点A(,0),B(0,2),则点B2018的坐标为_14如图,已知直线mn,1100°,则2的度数为_15阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:求作:的内切圆小明的作法如下:如图2,作,的平分线BE和CF,两线相交于点O;过点O作,垂足为点D; 点O为圆心,OD长为半径作所以,即为所求作的圆请回答:该尺规作图的依据是_16如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k0)的图象上与正方形的一个交点若图中阴影部分的面积等于9,则这个反比例函数的解析式为 17已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而_(填“增大”或“减小”)三、解答题(共7小题,满分69分)18(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AEBF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AEBF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; 19(5分)先化简代数式,再从2,2,0三个数中选一个恰当的数作为a的值代入求值20(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间21(10分)已知关于x的一元二次方程x2(m+3)x+m+2=1(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值22(10分)如图,已知点E,F分别是ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CFAE23(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率24(14分)如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3)(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1;(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状(无须说明理由)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据题意得=324m0,解得m故选B考点:根的判别式点睛:本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、A【解析】分析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A。3、D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.4、B【解析】0.056用科学记数法表示为:0.056=,故选B.5、B【解析】=8,8的相反数是8,的相反数是8,故选B6、B【解析】求出ADBD,根据FBDC90°,CADC90°,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90°,EAF+AFE=90°,FBD+BFD=90°,AFE=BFD,EAF=FBD,ADB=90°,ABC=45°,BAD=45°=ABC,AD=BD,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件7、C【解析】观察图象可判断,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断,再令两函数解析式的差为50,可求得t,可判断,可得出答案【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mtn,把(1,0)和(4,300)代入可得解得y小路100t100,令y小带y小路,可得60t100t100,解得t2.5,即小带和小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,不正确;令|y小带y小路|50,可得|60t100t100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小带50,此时小路还没出发,当t时,小路到达B城,y小带250.综上可知当t的值为或或或时,两车相距50 km,不正确故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间8、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态9、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI=2BC=2,=,=ABI=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,QI=AI=故选D点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键10、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30°,CD COD60°,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、可添ABD=CBD或AD=CD【解析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添ABD=CBD或AD=CD,ABD=CBD,在ABD和CBD中,ABDCBD(SAS);AD=CD,在ABD和CBD中,ABDCBD(SSS),故答案为ABD=CBD或AD=CD【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS12、11【解析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案【详解】ab,a、b为两个连续的整数,a5,b6,ab11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.13、(6054,2)【解析】分析:分析题意和图形可知,点B1、B3、B5、在x轴上,点B2、B4、B6、在第一象限内,由已知易得AB=,结合旋转的性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.详解:在AOB中,AOB=90°,OA=,OB=2,AB=,由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,点B2018相当于是由点B向右平移了:个单位得到的,点B2018的坐标为(6054,2).故答案为:(6054,2).点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.14、80°【解析】如图,已知mn,根据平行线的性质可得13,再由平角的定义即可求得2的度数.【详解】如图,mn,13,1100°,3100°,2180°100°80°,故答案为80°【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.15、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线【解析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质16、【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:反比例函数的图象关于原点对称,阴影部分的面积和正好为小正方形的面积设正方形的边长为b,则b2=9,解得b=3正方形的中心在原点O,直线AB的解析式为:x=2点P(2a,a)在直线AB上,2a=2,解得a=3P(2,3)点P在反比例函数(k0)的图象上,k=2×3=2此反比例函数的解析式为:17、增大【解析】根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性【详解】反比例函数的图像经过点(-2017,2018),k=-2017×2018<0,当x>0时,y随x的增大而增大.故答案为增大.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】(1)根据正方形的性质,可得ABC与C的关系,AB与BC的关系,根据两直线垂直,可得AMB的度数,根据直角三角形锐角的关系,可得ABM与BAM的关系,根据同角的余角相等,可得BAM与CBF的关系,根据ASA,可得ABEBCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到ABC=C,由余角的性质得到BAM=CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF证明方法类似(2);【详解】(1)证明:四边形ABCD是正方形,ABC=C,AB=BCAEBF,AMB=BAM+ABM=90°,ABM+CBF=90°,BAM=CBF在ABE和BCF中,ABEBCF(ASA),AE=BF;(2)解:如图2中,结论:AE=BF,理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90°,ABM+CBF=90°,BAM=CBF,ABEBCF,AE=BF(3)结论:AE=BF理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90°,ABM+CBF=90°,BAM=CBF,ABEBCF,AE=BF【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键19、,2【解析】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和2.试题解析:原式=·=当a=0时,原式=2.考点:分式的化简求值.20、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数21、(1)证明见解析;(2)m 的值为1或2【解析】(1)计算根的判别式的值可得(m+1)21,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可【详解】(1)证明:=(m+3)22(m+2)=(m+1)21,无论实数 m 取何值,方程总有两个实数根;(2)解:方程有一个根的平方等于 2,x=±2 是原方程的根,当 x=2 时,22(m+3)+m+2=1解得m=1;当 x=2 时,2+2(m+3)+m+2=1,解得m=2综上所述,m 的值为 1 或2【点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点22、证明见解析【解析】根据平行四边形性质推出ABCD,ABCD,得出EBAFDC,根据SAS证两三角形全等即可解决问题.【详解】解:四边形ABCD是平行四边形,AB=CD,ABCD,EBA=FDC,DE=BF,BE=DF,在ABE和CDF中,ABECDF(SAS),AE=CF,E=F,AECF【点睛】本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题23、 (1)200;(2)72°,作图见解析;(3).【解析】(1)用一等奖的人数除以所占的百分比求出总人数; (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生=200(名);(2)二等奖的人数是:200×(110%24%46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×=72°;(3)小华获得“一等奖或二等奖”的概率是: =【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.24、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到A2B2C2,(3)根据勾股定理逆定理解答即可【详解】(1)如图所示,A1B1C1即为所求;(2)如图所示,A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形