河南省安阳市林州市达标名校2023年中考数学对点突破模拟试卷含解析.doc
-
资源ID:88311317
资源大小:1.05MB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河南省安阳市林州市达标名校2023年中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BEEDDC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s若点P、Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示给出下列结论:当0t10时,BPQ是等腰三角形;SABE=48cm2;14t22时,y=1101t;在运动过程中,使得ABP是等腰三角形的P点一共有3个;当BPQ与BEA相似时,t=14.1其中正确结论的序号是()ABCD2如图,则的度数为( )A115°B110°C105°D65°3如果k0,b0,那么一次函数y=kx+b的图象经过( )A第一、二、三象限B第二、三、四象限C第一、三、四象限D第一、二、四象限4如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将BDE沿DE翻折至B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()ABCD5估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间6如图是某公园的一角,AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CDOB,则图中休闲区(阴影部分)的面积是()A米2B米2C米2D米27已知抛物线c:y=x2+2x3,将抛物线c平移得到抛物线c,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A将抛物线c沿x轴向右平移个单位得到抛物线cB将抛物线c沿x轴向右平移4个单位得到抛物线cC将抛物线c沿x轴向右平移个单位得到抛物线cD将抛物线c沿x轴向右平移6个单位得到抛物线c8下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是ABCD9如图,ABCD,点E在线段BC上,若140°,230°,则3的度数是()A70°B60°C55°D50°10如图,在O中,弦BC1,点A是圆上一点,且BAC30°,则的长是( )ABCD11定义运算:ab=2ab若a,b是方程x2+x-m=0(m0)的两个根,则(a+1)a -(b+1)b的值为( )A0 B2 C4m D-4m12下列说法正确的是( )A负数没有倒数 B1的倒数是1C任何有理数都有倒数 D正数的倒数比自身小二、填空题:(本大题共6个小题,每小题4分,共24分)13分式方程+=1的解为_.14如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_15如图,正比例函数y=kx(k0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则ABC的面积等于_16如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .17关于的一元二次方程有两个相等的实数根,则的值等于_18关于x的方程kx2(2k+1)x+k+2=0有实数根,则k的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长20(6分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.求,的值;求四边形的面积.21(6分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):从甲库运往B库粮食 吨;从乙库运往A库粮食 吨;从乙库运往B库粮食 吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?22(8分)已知OA,OB是O的半径,且OAOB,垂足为O,P是射线OA上的一点(点A除外),直线BP交O于点Q,过Q作O的切线交射线OA于点E(1)如图,点P在线段OA上,若OBQ=15°,求AQE的大小;(2)如图,点P在OA的延长线上,若OBQ=65°,求AQE的大小23(8分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?24(10分)如图,在ABC中,CDAB于点D,tanA2cosBCD,(1)求证:BC2AD;(2)若cosB,AB10,求CD的长.25(10分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完售完这两批衬衫,商场共盈利多少元?26(12分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格27(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC点P是该抛物线上一动点,设点P的横坐标为m(m4)(1)求该抛物线的表达式和ACB的正切值;(2)如图2,若ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PMCD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据题意,得到P、Q分别同时到达D、C可判断,分段讨论PQ位置后可以判断,再由等腰三角形的分类讨论方法确定,根据两个点的相对位置判断点P在DC上时,存在BPQ与BEA相似的可能性,分类讨论计算即可【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故正确则AE=104=6t=10时,BPQ的面积等于 AB=DC=8故 故错误当14t22时, 故正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则A、B及AB垂直平分线与点P运行路径的交点是P,满足ABP是等腰三角形此时,满足条件的点有4个,故错误BEA为直角三角形只有点P在DC边上时,有BPQ与BEA相似由已知,PQ=22t当或时,BPQ与BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故正确故选:D【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想2、A【解析】根据对顶角相等求出CFB65°,然后根据CDEB,判断出B115°【详解】AFD65°,CFB65°,CDEB,B180°65°115°,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键3、D【解析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限【详解】k0,一次函数y=kx+b的图象经过第二、四象限又b0时,一次函数y=kx+b的图象与y轴交与正半轴综上所述,该一次函数图象经过第一、二、四象限故选D【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交b=0时,直线过原点;b0时,直线与y轴负半轴相交4、B【解析】根据矩形的性质得到,CBx轴,ABy轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB,交ED于F,过B作BGBC于G,根据轴对称的性质得到BF=BF,BBED求得BB,设EG=x,根据勾股定理即可得到结论【详解】解:矩形OABC,CBx轴,ABy轴点B坐标为(6,1),D的横坐标为6,E的纵坐标为1D,E在反比例函数的图象上,D(6,1),E(,1),BE=6=,BD=11=3,ED=连接BB,交ED于F,过B作BGBC于GB,B关于ED对称,BF=BF,BBED,BFED=BEBD,即BF=3×,BF=,BB=设EG=x,则BG=xBB2BG2=BG2=EB2GE2,x=,EG=,CG=,BG=,B(,),k=故选B【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键5、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小6、C【解析】连接OD,弧AB的半径OA长是6米,C是OA的中点,OC=OA=×6=1AOB=90°,CDOB,CDOA在RtOCD中,OD=6,OC=1,又,DOC=60°(米2)故选C7、B【解析】抛物线C:y=x2+2x3=(x+1)24,抛物线对称轴为x=1抛物线与y轴的交点为A(0,3)则与A点以对称轴对称的点是B(2,3)若将抛物线C平移到C,并且C,C关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称则B点平移后坐标应为(4,3),因此将抛物线C向右平移4个单位故选B8、B【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误故选:B【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力9、A【解析】试题分析:ABCD,1=40°,1=30°,C=40°3是CDE的外角,3=C+2=40°+30°=70°故选A考点:平行线的性质10、B【解析】连接OB,OC首先证明OBC是等边三角形,再利用弧长公式计算即可【详解】解:连接OB,OCBOC2BAC60°,OBOC,OBC是等边三角形,OBOCBC1,的长,故选B【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型11、A【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算ab=2ab对式子(a+1)a -(b+1)b用新定义运算展开整理后代入进行求解即可.【详解】a,b是方程x2+x-m=0(m0)的两个根,a+b=-1,定义运算:ab=2ab,(a+1)a -(b+1)b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故选A.【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.12、B【解析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、1的倒数是1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据解分式方程的步骤,即可解答【详解】方程两边都乘以,得:,解得:,检验:当时,所以分式方程的解为,故答案为【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根14、5【解析】根据题意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2×55,故答案为5【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度15、1【解析】根据反比例函数的性质可判断点A与点B关于原点对称,则SBOC=SAOC,再利用反比例函数k的几何意义得到SAOC=3,则易得SABC=1【详解】双曲线y=与正比例函数y=kx的图象交于A,B两点,点A与点B关于原点对称,SBOC=SAOC,SAOC=×1=3,SABC=2SAOC=1故答案为116、(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标【详解】四边形AOCD为矩形,D的坐标为(10,8),AD=BC=10,DC=AB=8,矩形沿AE折叠,使D落在BC上的点F处,AD=AF=10,DE=EF,在RtAOF中,OF= =6,FC=106=4,设EC=x,则DE=EF=8x,在RtCEF中,EF2=EC2+FC2,即(8x)2=x2+42,解得x=3,即EC的长为3.点E的坐标为(10,3).17、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:= , ,即a(a-1)=1, a-1=,故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a0)的根的判别式=b²-4ac:当>0, 方程有两个不相等的实数根;当<0, 方程没有实数根;当=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.18、k【解析】分k=1及k1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k1时,由1即可得出关于k的一元一次不等式,解之即可得出k的取值范围综上此题得解【详解】当k=1时,原方程为-x+2=1,解得:x=2,k=1符合题意;当k1时,有=-(2k+1)2-4k(k+2)1,解得:k且k1综上:k的取值范围是k故答案为:k【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k1两种情况考虑是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、路灯高CD为5.1米【解析】根据AMEC,CDEC,BNEC,EAMA得到MACDBN,从而得到ABNACD,利用相似三角形对应边的比相等列出比例式求解即可【详解】设CD长为x米,AMEC,CDEC,BNEC,EAMA,MACDBN,ECCDx米,ABNACD,即,解得:x5.1经检验,x5.1是原方程的解,路灯高CD为5.1米【点睛】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形20、(1),.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)点在上,点在上,且,.过,两点,解得,.(2)如图,延长,交于点,则.轴,轴,.四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.21、(1)(100x);(1x);(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元【解析】分析:()根据题意解答即可; ()弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”详解:()设从甲库运往A库粮食x吨; 从甲库运往B库粮食(100x)吨; 从乙库运往A库粮食(1x)吨; 从乙库运往B库粮食(20+x)吨; 故答案为(100x);(1x);(20+x) ()依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100x)吨,乙库运往A库(1x)吨,乙库运到B库(20+x)吨 则,解得:0x1 从甲库运往A库粮食x吨时,总运费为: y=12×20x+10×25(100x)+12×15(1x)+8×20×120(100x) =30x+39000; 从乙库运往A库粮食(1x)吨,0x1,此时100x0,y=30x+39000(0x1) 300,y随x的增大而减小,当x=1时,y取最小值,最小值是2答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”22、(1)30°;(2)20°;【解析】(1)利用圆切线的性质求解;(2) 连接OQ,利用圆的切线性质及角之间的关系求解。【详解】(1)如图中,连接OQEQ是切线,OQEQ,OQE=90°,OAOB,AOB=90°,AQB=AOB=45°,OB=OQ,OBQ=OQB=15°,AQE=90°15°45°=30°(2)如图中,连接OQOB=OQ,B=OQB=65°,BOQ=50°,AOB=90°,AOQ=40°,OQ=OA,OQA=OAQ=70°,EQ是切线,OQE=90°,AQE=90°70°=20°【点睛】此题主要考查圆的切线的性质及圆中集合问题的综合运等.23、(1)1000 (2)200 (3)54° (4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人)答:校20000名学生一餐浪费的食物可供4000人食用一餐【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)证明见解析;(2)CD2.【解析】(1)根据三角函数的概念可知tanA,cosBCD,根据tanA2cosBCD即可得结论;(2)由B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可【详解】(1)tanA,cosBCD,tanA2cosBCD,2·,BC2AD.(2)cosB,BC2AD,.AB10,AD×104,BD1046,BC8,CD2.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.25、(1)2000件;(2)90260元【解析】(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论【详解】解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据题意得:-=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意答:商场第一批购进衬衫2000件(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元)答:售完这两批衬衫,商场共盈利90260元【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算26、2.4元/米【解析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可【详解】解:设去年用水的价格每立方米元,则今年用水价格为每立方米元由题意列方程得:解得经检验,是原方程的解(元/立方米)答:今年居民用水的价格为每立方米元【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键27、(1)y=x23x+1;tanACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.【解析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BGCA,交CA的延长线于点G,证GABOAC得=,据此知BG=2AG在RtABG中根据BG2+AG2=AB2,可求得AG=继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;(2)作BHCD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h在RtABK中,由勾股定理求得h=,据此求得点K(1,)待定系数法求出直线CK的解析式为y=-x+1设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解解之求得x的值即可得出答案;(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0)及PH=m2-3m+1),OH=m,AH=m-2,MH=1当1m6时,由OANHAP知=据此得ON=m-1再证ONQHMQ得=据此求得OQ=m-1从而得出AQ=DM=6-m结合AQDM可得答案当m6时,同理可得【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,解得:;该抛物线的解析式为y=x23x+1,过点B作BGCA,交CA的延长线于点G(如图1所示),则G=90°COA=G=90°,CAO=BAG,GABOAC=2BG=2AG,在RtABG中,BG2+AG2=AB2,(2AG)2+AG2=22,解得: AG=BG=,CG=AC+AG=2+=在RtBCG中,tanACB(2)如图2,过点B作BHCD于点H,交CP于点K,连接AK易得四边形OBHC是正方形应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HBKB=1h,AK=OA+HK=2+(1h)=6h,在RtABK中,由勾股定理,得AB2+BK2=AK2,22+h2=(6h)2解得h=,点K(1,),设直线CK的解析式为y=hx+1,将点K(1,)代入上式,得=1h+1解得h=,直线CK的解析式为y=x+1,设点P的坐标为(x,y),则x是方程x23x+1=x+1的一个解,将方程整理,得3x216x=0,解得x1=,x2=0(不合题意,舍去)将x1=代入y=x+1,得y=,点P的坐标为(,),m=;(3)四边形ADMQ是平行四边形理由如下:CDx轴,yC=yD=1,将y=1代入y=x23x+1,得1=x23x+1,解得x1=0,x2=6,点D(6,1),根据题意,得P(m, m23m+1),M(m,1),H(m,0),PH=m23m+1,OH=m,AH=m2,MH=1,当1m6时,DM=6m,如图3,OANHAP,=,ON=m1,ONQHMQ,OQ=m1,AQ=OAOQ=2(m1)=6m,AQ=DM=6m,又AQDM,四边形ADMQ是平行四边形当m6时,同理可得:四边形ADMQ是平行四边形综上,四边形ADMQ是平行四边形【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点