陕西省榆林市重点中学2023年中考四模数学试题含解析.doc
-
资源ID:88311429
资源大小:697.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
陕西省榆林市重点中学2023年中考四模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一、单选题如图,ABC中,AB4,AC3,BC2,将ABC绕点A顺时针旋转60°得到AED,则BE的长为()A5B4C3D22将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )Ay=(x2)2+3 By=(x2)23 Cy=(x+2)2+3 Dy=(x+2)233图为小明和小红两人的解题过程下列叙述正确的是( )计算:+A只有小明的正确B只有小红的正确C小明、小红都正确D小明、小红都不正确4如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A主视图B俯视图C左视图D一样大5如图,已知ABCD,DEAF,垂足为E,若CAB=50°,则D的度数为()A30°B40°C50°D60°6在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分BAC的是( ) A图2B图1与图2C图1与图3D图2与图37如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )ABCD8如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A8073B8072C8071D80709如图,要使ABCD成为矩形,需添加的条件是()AAB=BCBABC=90°CACBDD1=2102022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )A12×10B1.2×10C1.2×10D0.12×10二、填空题(共7小题,每小题3分,满分21分)11分解因式:x21=_12抛物线yx24x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_13如图,PA,PB是O是切线,A,B为切点,AC是O的直径,若P=46°,则BAC= 度14把抛物线y=2x2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_15如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动设运动时间为t秒,APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )A B C D16如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_秒钟17一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是_三、解答题(共7小题,满分69分)18(10分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.19(5分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?20(8分)科技改变世界2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹没电的时候还会自己找充电桩充电某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?21(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C(1)求点C和点A的坐标(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有_个交点;若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:_;当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标22(10分)计算:|1|2sin45°+23(12分)已知关于x的分式方程=2和一元二次方程mx23mx+m1=0中,m为常数,方程的根为非负数(1)求m的取值范围;(2)若方程有两个整数根x1、x2,且m为整数,求方程的整数根24(14分)图1是某市2009年4月5日至14日每天最低气温的折线统计图图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是_,中位数是_,方差是_请用扇形图表示出这十天里温度的分布情况参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据旋转的性质可得AB=AE,BAE=60°,然后判断出AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB【详解】解:ABC绕点A顺时针旋转 60°得到AED,AB=AE,BAE=60°,AEB是等边三角形,BE=AB,AB=1,BE=1故选B【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义2、D【解析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1故选:D【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式3、D【解析】直接利用分式的加减运算法则计算得出答案【详解】解:+,故小明、小红都不正确故选:D【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键4、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C5、B【解析】试题解析:ABCD,且 在中, 故选B6、C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,BAC为公共角,AMNAEF,3=4,AM=AE,AN=AF,MF=EN,又MDF=EDN,FDMNDE,DM=DE,又AD是公共边,ADMADE,1=2,即AD平分BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.7、B【解析】根据俯视图可确定主视图的列数和每列小正方体的个数【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图8、A【解析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1故选:A【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.9、B【解析】根据一个角是90度的平行四边形是矩形进行选择即可【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90°,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B【点睛】本题主要应用的知识点为:矩形的判定 对角线相等且相互平分的四边形为矩形一个角是90度的平行四边形是矩形10、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】数据12000用科学记数法表示为1.2×104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(共7小题,每小题3分,满分21分)11、(x+1)(x1)【解析】试题解析:x21=(x+1)(x1)考点:因式分解运用公式法12、(3,0)【解析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标【详解】把点(1,0)代入抛物线y=x2-4x+中,得m=6,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3抛物线与x轴的另一个交点的坐标是(3,0)故答案为(3,0).【点睛】本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法本题也可以用根与系数关系直接求解13、1【解析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到OAP为直角,再由OAP-PAB即可求出BAC的度数【详解】PA,PB是O是切线,PA=PB.又P=46°,PAB=PBA=.又PA是O是切线,AO为半径,OAAP.OAP=90°.BAC=OAPPAB=90°67°=1°.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键14、y=1(x3)11【解析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式【详解】y=1x1的顶点坐标为(0,0),把抛物线右平移3个单位,再向下平移1个单位,得新抛物线顶点坐标为(3,1),平移不改变抛物线的二次项系数,平移后的抛物线的解析式是y=1(x3)11故答案为y=1(x3)11【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)1+k (a,b,c为常数,a0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”15、C.【解析】分析:根据动点P在OC上运动时,APB逐渐减小,当P在上运动时,APB不变,当P在DO上运动时,APB逐渐增大,即可得出答案解答:解:当动点P在OC上运动时,APB逐渐减小;当P在上运动时,APB不变;当P在DO上运动时,APB逐渐增大故选C16、2.5秒【解析】把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线(1)展开前面右面由勾股定理得ABcm;(2)展开底面右面由勾股定理得AB5cm;所以最短路径长为5cm,用时最少:5÷22.5秒【点睛】本题考查了勾股定理的拓展应用“化曲面为平面”是解决“怎样爬行最近”这类问题的关键17、15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值详解: 当y=127时, 解得:x=43;当y=43时,解得:x=15;当y=15时, 解得 不符合条件则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(共7小题,满分69分)18、(1)作图见解析;.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出A'B'C';(3)直接利用(2)中图形求出三角形面积即可详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:A'B'C'即为所求;(3)SA'B'C'=×4×8=1点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形19、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.【解析】1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题【详解】(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个根据题意,得解得答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元则购进普通白炽灯泡(120a)个根据题意得W=(6045)a+(3025)(120a)=10a+110a+145a+25(120a)×30%,解得a75,k=100,W随a的增大而增大,a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(12075)=45个答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元【点睛】本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.20、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,根据题意两不等式即可得到结论【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,解得,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,30a+40(200a)7000,解得:a100,则最多应购进A种机器人100台【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键21、(1)C(2,-1),A(1,0);(2)3,0t1,(+2,1)或(-+2,1)或(-1,0)【解析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,A(1,0),B(3,0),抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,C(2,-1);(2)将x=0代入抛物线的解析式得:y=3,抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0t1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0t1如图2所示:PQAC且PQ=AC,四边形ACQP为平行四边形,又点C的纵坐标为-1,点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2点P的坐标为(+2,1)或(-+2,1),当点P(-1,0)时,也满足条件综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键22、1【解析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案【详解】原式=(1)2×+24=1+24=1【点睛】此题主要考查了实数运算,正确化简各数是解题关键23、(1)且,;(2)当m=1时,方程的整数根为0和3.【解析】(1)先解出分式方程的解,根据分式的意义和方程的根为非负数得出的取值;(2)根据根与系数的关系得到x1+x2=3,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【详解】解:(1)关于x的分式方程的根为非负数,且.又,且,解得且.又方程为一元二次方程,.综上可得:且,. (2)一元二次方程有两个整数根x1、x2,m为整数, x1+x2=3,为整数,m=1或.又且,m1.当m=1时,原方程可化为.解得:,. 当m=1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.24、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】(1)根据图1找出8、9、10的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11的天数在扇形统计图中所占的度数,然后作出扇形统计图即可【详解】(1)由图1可知,8有2天,9有0天,10有2天,补全统计图如图;(2)根据条形统计图,7出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7,第6个温度为8,所以,中位数为(7+8)=7.5;平均数为(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=2×(68)2+3×(78)2+2×(88)2+2×(108)2+(118)2,=(8+3+0+8+9),=×28,=2.8;(3)6的度数,×360°=72°,7的度数,×360°=108°,8的度数,×360°=72°,10的度数,×360°=72°,11的度数,×360°=36°,作出扇形统计图如图所示【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数给定一组数据,出现次数最多的那个数,称为这组数据的众数