黑龙江省哈工大附中2023届中考四模数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,等腰ABC中,ABAC10,BC6,直线MN垂直平分AB交AC于D,连接BD,则BCD的周长等于()A13B14C15D162如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )A4B3CD3小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:西游记、施耐庵、安徒生童话、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )ABCD4把一副三角板如图(1)放置,其中ACBDEC90°,A41°,D30°,斜边AB4,CD1把三角板DCE绕着点C顺时针旋转11°得到D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )ABCD45如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()AABCADC,BADBCDBABBCCABCD,ADBCDDAB+BCD180°6如图,已知ABCD,ADCD,140°,则2的度数为()A60°B65°C70°D75°7四个有理数1,2,0,3,其中最小的是( )A1 B2 C0 D38下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D49函数yax2与yax+b的图象可能是()ABCD10已知O的半径为3,圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定二、填空题(本大题共6个小题,每小题3分,共18分)11已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_12某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则_13小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_千米14已知是方程组的解,则ab的值是_15二次根式中,x的取值范围是 16如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_三、解答题(共8题,共72分)17(8分)如图1,已知扇形MON的半径为,MON=90°,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.18(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°0.67,cos42.4°0.74,tan42.4°0.905,sin45.5°0.71,cos45.5°0.70,tan45.5°1.02)()求发射台与雷达站之间的距离;()求这枚火箭从到的平均速度是多少(结果精确到0.01)?19(8分)如图,已知ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F, (1)判断ABC的形状,并证明你的结论;(2)如图1,若BE=CE=,求A的面积;(3)如图2,若tanCEF=,求cosC的值.20(8分)如图,在梯形中,,点为边上一动点,作,垂足在边上,以点为圆心,为半径画圆,交射线于点.(1)当圆过点时,求圆的半径;(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.21(8分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC(参考数据:sin76°,cos76°,tan 76°4,sin53°,tan53°)22(10分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率23(12分)在平面直角坐标系xOy中,抛物线yax2+2ax+c(其中a、c为常数,且a0)与x轴交于点A(3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1(1)求抛物线的表达式;(2)求CAB的正切值;(3)如果点P是x轴上的一点,且ABPCAO,直接写出点P的坐标24定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距例:如图,在ABC中,D为边BC的中点,AEBC于E,则线段DE的长叫做边BC的中垂距(1)设三角形一边的中垂距为d(d0)若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图,在ABC中,B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距(3)如图,在矩形ABCD中,AB=6,AD=1点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC求ACF中边AF的中垂距参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案【详解】解:MN是线段AB的垂直平分线,ADBD,ABAC10,BD+CDAD+CDAC10,BCD的周长AC+BC10+616,故选D【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用2、C【解析】设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可【详解】设I的边长为x根据题意有 解得或(舍去)故选:C【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键3、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是;故选D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比4、A【解析】试题分析:由题意易知:CAB=41°,ACD=30°若旋转角度为11°,则ACO=30°+11°=41°AOC=180°-ACO-CAO=90°在等腰RtABC中,AB=4,则AO=OC=2在RtAOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=故选A.考点: 1.旋转;2.勾股定理.5、D【解析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形所以根据菱形的性质进行判断【详解】解:四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,四边形是平行四边形(对边相互平行的四边形是平行四边形);过点分别作,边上的高为,则(两纸条相同,纸条宽度相同);平行四边形中,即,即故正确;平行四边形为菱形(邻边相等的平行四边形是菱形),(菱形的对角相等),故正确;,(平行四边形的对边相等),故正确;如果四边形是矩形时,该等式成立故不一定正确故选:【点睛】本题考查了菱形的判定与性质注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”6、C【解析】由等腰三角形的性质可求ACD70°,由平行线的性质可求解【详解】ADCD,140°,ACD70°,ABCD,2ACD70°,故选:C【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题7、D【解析】解:1102,最小的是1故选D8、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理9、B【解析】选项中,由图可知:在,;在,所以A错误;选项中,由图可知:在,;在,所以B正确;选项中,由图可知:在,;在,所以C错误;选项中,由图可知:在,;在,所以D错误故选B点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.10、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解:O的半径为3,圆心O到直线L的距离为2,32,即:dr,直线L与O的位置关系是相交故选A考点:直线与圆的位置关系二、填空题(本大题共6个小题,每小题3分,共18分)11、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数【详解】袋中小球的总个数是:2÷=8(个)故答案为8个【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键12、20%【解析】试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x试题解析:依题意,有:100(1+x)2=144,1+x=±12, 解得:x=20%或-22(舍去)考点:一元二次方程的应用13、1【解析】根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.【详解】设小明的速度为akm/h,小亮的速度为bkm/h, ,解得, ,当小明到达B地时,小亮距离A地的距离是:120×(3.51)60×3.51(千米),故答案为1【点睛】此题考查一次函数的应用,解题关键在于列出方程组.14、4; 【解析】试题解析:把代入方程组得:,×2-得:3a=9,即a=3,把a=3代入得:b=-1,则a-b=3+1=4,15、【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须16、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积【详解】:第1个正方形的面积为:1+4××2×1=5=51;第2个正方形的面积为:5+4××2×=25=52;第3个正方形的面积为:25+4××2×=125=53;第n个正方形的面积为:5n;第2018个正方形的面积为:1故答案为1【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积三、解答题(共8题,共72分)17、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)ODBM,ABOM,ODM=BAM=90°ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90°,90°,45°,BOA=290°BOA90°,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键18、 ()发射台与雷达站之间的距离约为;()这枚火箭从到的平均速度大约是.【解析】()在RtACD中,根据锐角三角函数的定义,利用ADC的余弦值解直角三角形即可;()在RtBCD和RtACD中,利用BDC的正切值求出BC的长,利用ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【详解】()在中,0.74,.答:发射台与雷达站之间的距离约为.()在中,.在中,.答:这枚火箭从到的平均速度大约是.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.19、 (1) ABC为直角三角形,证明见解析;(2)12;(3).【解析】(1)由,得CEFCBE,CBE=CEF,由BD为直径,得ADE+ABE=90°,即可得DBC=90°故ABC为直角三角形.(2)设EBC=ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则ABE=60°故AB=BE=,则可求出求A的面积;(3)由(1)知D=CFE=CBE,故tanCBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FKBD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tanC 再求出cosC即可.【详解】解:,CEFCBE,CBE=CEF,AE=AD,ADE=AED=FEC=CBE,BD为直径,ADE+ABE=90°,CBE+ABE=90°,DBC=90°ABC为直角三角形.(2)BE=CE设EBC=ECB=x,BDE=EBC=x,AE=ADAED=ADE=x,CEF=AED=xBFE=2x在BDF中由内角和可知:3x=90°x=30°ABE=60°AB=BE=(3)由(1)知:D=CFE=CBE,tanCBE=,设EF=a,BE=2a,BF=,BD=2BF=,AD=AB=,,DE=2BE=4a,过F作FKBD交CE于K,, , tanC cosC.【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.20、(1)x=1 (2) (1)【解析】(1)作AMBC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=98k,由ABECEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQEG、HNBC,先证EPQPHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PCNC=k,继而表示出EF、EH的长,从而出答案【详解】(1)作AMBC于点M,连接AP,如图1,梯形ABCD中,AD/BC,且AB=DC=5、AD=1、BC=9,BM=4、AM=1,tanB=tanC=,PHDC,设PH=1k,则CH=4k、PC=5k,BC=9,PM=BCBMPC=55k,AP=AM+PM=9+(55k) ,PA=PH,9+(55k) =9k,解得:k=1或k=,当k= 时,CP=5k= >9,舍去;k=1,则圆P的半径为1(2)如图2,由(1)知,PH=PE=1k、CH=4k、PC=5k,BC=9,BE=BCPEPC=98k,ABECEH, ,即 ,解得:k= ,则PH= ,即圆P的半径为,圆B与圆P相交,且BE=98k= ,<r<;(1)在圆P上取点F关于EH的对称点G,连接EG,作PQEG于G,HNBC于N,则EG=EF、1=1、EQ=QG、EF=EG=2EQ,GEP=21,PE=PH,1=2,4=1+2=21,GEP=4,EPQPHN,EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,sinC= 、cosC= ,NC= k、HN= k,PN=PCNC= k,EF=EG=2EQ=2PN= k,EH= ,故线段EH和EF的比值为定值【点睛】此题考查全等三角形的性质,相似三角形的性质,解直角三角形,勾股定理,解题关键在于作辅助线.21、工作人员家到检查站的距离AC的长约为km【解析】分析:过点B作BHl交l于点H,解RtBCH,得出CH=BCsinCBH=,BH=BCcosCBH=再解RtBAH中,求出AH=BHtanABH=,那么根据AC=CH-AH计算即可.详解:如图,过点B作BHl交l于点H,在RtBCH中,BHC=90°,CBH=76°,BC=7km,CH=BCsinCBH,BH=BCcosCBH在RtBAH中,BHA=90°,ABH=53°,BH=,AH=BHtanABH,AC=CHAH=(km)答:工作人员家到检查站的距离AC的长约为km点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键22、(1)答案见解析;(2)【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率【详解】解:(1)列表如下:所有等可能的情况有12种; (2)一次函数y=kx+b的图象经过一、二、四象限时,k0,b0,情况有4种,则P= 23、(4)yx44x+3;(4);(3)点P的坐标是(4,0)【解析】(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为ya(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明ABC=90°,最后,依据锐角三角函数的定义求解即可;(3) 连接BC,可证得AOB是等腰直角三角形,ACBBPO,可得代入个数据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线yax4+4ax+c的对称轴是直线,a0,抛物线开口向下,又与x轴有交点,抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(4,4)可设此抛物线的表达式是ya(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(3,0),可得a4因此,抛物线的表达式是yx44x+3(4)如图4,点B的坐标是(0,3)连接BCAB434+3448,BC444+444,AC444+4440,得AB4+BC4AC4ABC为直角三角形,ABC90°,所以tanCAB=即CAB的正切值等于(3)如图4,连接BC,OAOB3,AOB90°,AOB是等腰直角三角形,BAPABO45°,CAOABP,CABOBP,ABCBOP90°,ACBBPO,OP4,点P的坐标是(4,0)【点睛】本题主要考查二次函数的图像与性质,综合性大.24、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3). 【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断(2)如图中,作AEBC于E根据已知得出AE=BE,再求出BD的长,即可求出DE的长(3)如图中,作CHAF于H,先证ADEFCE,得出AE=EF,利用勾股定理求出AE的长,然后证明ADECHE,建立方程求出EH即可解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图中,作AEBC于E在RtABE中,AEB=90°,B=15°,AB=3 ,AE=BE=3,AD为BC边中线,BC=8,BD=DC=1,DE=BDBE=13=1,边BC的中垂距为1(3)解:如图中,作CHAF于H四边形ABCD是矩形,D=EHC=ECF=90°,ADBF,DE=EC,AED=CEF,ADEFCE,AE=EF,在RtADE中,AD=1,DE=3,AE= =5,D=EHC,AED=CEH,ADECHE, = , = ,EH= ,ACF中边AF的中垂距为