欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    福建省厦门市湖里区湖里中学2022-2023学年中考数学模拟精编试卷含解析.doc

    • 资源ID:88311528       资源大小:519KB        全文页数:14页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    福建省厦门市湖里区湖里中学2022-2023学年中考数学模拟精编试卷含解析.doc

    2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是12已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()Aa13,b=13 Ba13,b13 Ca13,b13 Da13,b=133估计+1的值在()A2和3之间B3和4之间C4和5之间D5和6之间4如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m5如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8CD6如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( ) ABCD7下列各数中,无理数是()A0BCD8若不等式组无解,那么m的取值范围是()Am2Bm2Cm2Dm29如图,正方形ABCD内接于圆O,AB4,则图中阴影部分的面积是( )ABCD10如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分BED,则BE的长为()ABCD4二、填空题(共7小题,每小题3分,满分21分)11计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于153×57=3021,38×32=1216,84×86=7224,71×79=2(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 (2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律12如图,已知,D、E分别是边BA、CA延长线上的点,且如果,那么AE的长为_13如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,AEQ沿EQ翻折形成FEQ,连接PF,PD,则PF+PD的最小值是_14A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地若设乙车的速度是x千米/小时,则根据题意,可列方程_15若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)_ 0,(填“”、“”或“”)16若3,a,4,5的众数是4,则这组数据的平均数是_17已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 三、解答题(共7小题,满分69分)18(10分)19(5分)如图,AB是O的直径,点C是弧AB的中点,点D是O外一点,AD=AB,AD交O于F,BD交O于E,连接CE交AB于G(1)证明:C=D;(2)若BEF=140°,求C的度数;(3)若EF=2,tanB=3,求CECG的值20(8分) (1)计算:3tan30°+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x)÷,其中x=,y=1.21(10分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的_倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?22(10分)先化简,再求值:(1+)÷,其中x=+123(12分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC26,tanB,求EF的长24(14分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1B 布袋中有三个完全相同的小球,分别标有数字1,1和2小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y)(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=x1上的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)÷6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2=2故选A2、A【解析】试题解析:原来的平均数是13岁,13×23=299(岁),正确的平均数a=12.9713,原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,b=13;故选A考点:1.平均数;2.中位数.3、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键4、D【解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,即,解得:AB6,故选:D【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键5、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设O的半径为r,则OC=r2,在RtAOC中,AC=1,OC=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90°在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D6、C【解析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,矩形的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解ABP面积变化情况是解题的关键,属于中考常考题型7、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.8、A【解析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围【详解】由得,xm,由得,x1,又因为不等式组无解,所以m1故选A【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了9、B【解析】连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=SO-S正方形ABCD列式计算可得【详解】解:连接OA、OB,四边形ABCD是正方形,AOB=90°,OAB=45°,OA=ABcos45°=4×=2,所以阴影部分的面积=SO-S正方形ABCD=×(2)2-4×4=8-1故选B【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式10、D【解析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,D=90°,ADBC,然后根据AE平分BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】四边形ABCD是矩形,AB=CD=3,AD=BC=4,D=90°,ADBC,DAE=BEA,AE是DEB的平分线,BEA=AED,DAE=AED,DE=AD=4,再RtDEC中,EC=,BE=BC-EC=4-.故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.二、填空题(共7小题,每小题3分,满分21分)11、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1b)【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,例如:44×46=2024,(2)(1a+b)(1a+1b)=10a(a+1)+b(1b)点睛:本题主要考查的是规律的发现与整理,属于基础题型找出一般性的规律是解决这个问题的关键12、【解析】由DEBC不难证明ABCADE,再由,将题中数值代入并根据等量关系计算AE的长.【详解】解:由DEBC不难证明ABCADE,,CE=4,,解得:AE=故答案为.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键.13、1【解析】如图作点D关于BC的对称点D,连接PD,ED,由DP=PD,推出PD+PF=PD+PF,又EF=EA=2是定值,即可推出当E、F、P、D共线时,PF+PD定值最小,最小值=EDEF【详解】如图作点D关于BC的对称点D,连接PD,ED,在RtEDD中,DE=6,DD=1,ED=10,DP=PD,PD+PF=PD+PF,EF=EA=2是定值,当E、F、P、D共线时,PF+PD定值最小,最小值=102=1,PF+PD的最小值为1,故答案为1【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.14、【解析】直接利用甲车比乙车早半小时到达目的地得出等式即可【详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:故答案为:【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键15、【解析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定mn以及mn的符号,可得结果【详解】解:根据题意得:m1n,且|m|n|,mn1,mn1,(mn)(mn)1故答案为【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键16、4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可试题解析:3,a,4,5的众数是4,a=4,这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数17、1【解析】试题分析:多边形的每一个内角都等于108°,每一个外角为72°多边形的外角和为360°,这个多边形的边数是:360÷÷72=1三、解答题(共7小题,满分69分)18、2x2【解析】分别解不等式,进而得出不等式组的解集【详解】解得:x2解得:x2故不等式组的解集为:2x2【点睛】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键19、(1)见解析;(2)70°;(3)1【解析】(1)先根据等边对等角得出B=D,即可得出结论;(2)先判断出DFE=B,进而得出D=DFE,即可求出D=70°,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出ACGECA,即可得出结论【详解】(1)AB=AD,B=D,B=C,C=D;(2)四边形ABEF是圆内接四边形,DFE=B,由(1)知,B=D,D=DFE,BEF=140°=D+DFE=2D,D=70°,由(1)知,C=D,C=70°;(3)如图,由(2)知,D=DFE,EF=DE,连接AE,OC,AB是O的直径,AEB=90°,BE=DE,BE=EF=2,在RtABE中,tanB=3,AE=3BE=6,根据勾股定理得,AB=,OA=OC=AB=,点C是 的中点, ,AOC=90°,AC=OA=2,CAG=CEA,ACG=ECA,ACGECA,CECG=AC2=1【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键20、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30°+|2-|+()-1-(3-)0-(-1)2018=3×+2-+3-1-1,=+2+3-1-1,=3;(2)(x)÷,=,=x-y,当x=,y=-1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法21、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答【详解】解:(1)依题意得:(3+2)÷(32)5故答案是:5;(2)依题意得:a+2+1a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a1+x2axa+1所以 a+3xa+3(a+1)2答:第三次变化后中间小桶中有2个小球【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答22、,1+ 【解析】运用公式化简,再代入求值.【详解】原式= ,当x=+1时,原式=【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法23、 (1)证明见解析;(2)EF1【解析】(1)如图1,利用折叠性质得EAEC,12,再证明13得到AEAF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EHAB于H,如图,利用四边形AECF为菱形得到AEAFCE13,则判断四边形ABEF为平行四边形得到EFAB,根据等腰三角形的性质得AHBH,再在RtBEH中利用tanB可计算出BH5,从而得到EFAB2BH1【详解】(1)证明:如图1,平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,EAEC,12,四边形ABCD为平行四边形,ADBC,23,13,AEAF,AFCE,而AFCE,四边形AECF为平行四边形,EAEC,四边形AECF为菱形;(2)解:作EHAB于H,如图,E为BC中点,BC26,BEEC13,四边形AECF为菱形,AEAFCE13,AFBE,四边形ABEF为平行四边形,EFAB,EAEB,EHAB,AHBH,在RtBEH中,tanB,设EH12x,BH5x,则BE13x,13x13,解得x1,BH5,AB2BH1,EF1【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了平行四边形的性质、菱形的判定与性质24、 (1)见解析;(1) 【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.(1)由题意得11-1(1,-1)(1,-1)-1(1,-1)(1,-1)-2(1,-2)(1,-2)(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=x1上)=.考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.

    注意事项

    本文(福建省厦门市湖里区湖里中学2022-2023学年中考数学模拟精编试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开