福建省平潭县重点中学2022-2023学年中考数学适应性模拟试题含解析.doc
-
资源ID:88311589
资源大小:800KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
福建省平潭县重点中学2022-2023学年中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1y=(m1)x|m|+3m表示一次函数,则m等于()A1B1C0或1D1或12我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A6.75×103吨B67.5×103吨C6.75×104吨D6.75×105吨3某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)4我国古代数学名著孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )ABCD5已知常数k0,b0,则函数y=kx+b,的图象大致是下图中的()ABCD6甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=7如图,A、B、C是O上的三点,BAC30°,则BOC的大小是()A30°B60°C90°D45°8-2的倒数是( )A-2BCD29如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D310由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A B C D11已知点M (2,3 )在双曲线上,则下列一定在该双曲线上的是( )A(3,-2 )B(-2,-3 )C(2,3 )D(3,2)12已知点A(0,4),B(8,0)和C(a,a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()ABCD2二、填空题:(本大题共6个小题,每小题4分,共24分)13边长为3的正方形网格中,O的圆心在格点上,半径为3,则tanAED=_14已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B连接OC交反比例函数图象于点D,且,连接OA,OE,如果AOC的面积是15,则ADC与BOE的面积和为_15在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_16如图,A、B是反比例函数y(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_17如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,AB10,AC6,连接OD交BC于点E,DE_18如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去则点B6的坐标_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点分别求出一次函数与反比例函数的解析式;求OAB的面积20(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?21(6分)在正方形ABCD中,AB4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PMPB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm6.04.84.56.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PMPB的长度最小值约为_cm.22(8分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长23(8分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝)小强根据他学习函数的经验做了如下的探究下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米则y关于x的函数表达式为_;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x_时,y有最小值由此,小强确定篱笆长至少为_米24(10分)计算.25(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且PBD是以BD为直角边的直角三角形,求点P的坐标26(12分)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;请解答下列问题:按以上规律列出第5个等式:a5=;用含有n的代数式表示第n个等式:an=(n为正整数);求a1+a2+a3+a4+a100的值27(12分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1(1)在图1中画出AOB关于x轴对称的A1OB1,并写出点A1,B1的坐标;(2)在图2中画出将AOB绕点O顺时针旋转90°的A2OB2,并求出线段OB扫过的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由一次函数的定义知,|m|=1且m-10,所以m=-1,故选B.2、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)67500一共5位,从而67 500=6.75×2故选C3、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k4、B【解析】设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可【详解】解:设大马有匹,小马有匹,由题意得:,故选:B【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组5、D【解析】当k0,b0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项【详解】 解:当k0,b0时,直线与y轴交于正半轴,且y随x的增大而减小,直线经过一、二、四象限,双曲线在二、四象限故选D【点睛】本题考查了一次函数、反比例函数的图象与性质关键是明确系数与图象的位置的联系6、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键7、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30°,BOC=2BAC =60°(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8、B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握9、D【解析】根据等边三角形的性质得到A=60°,再利用圆周角定理得到BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60°,BOC=2A=120°,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120°是解决问题的关键10、A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A考点:三视图视频11、A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件故选A12、B【解析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可【详解】AB的中点D的坐标是(4,-2),C(a,-a)在一次函数y=-x上,设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1根据题意得:,解得:,则交点的坐标是(3,-3)则这个圆的半径的最小值是:=故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据同弧或等弧所对的圆周角相等知AED=ABD,所以tanAED的值就是tanB的值.【详解】解: AED=ABD (同弧所对的圆周角相等),tanAED=tanB=.故答案为:.【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.14、1【解析】连结AD,过D点作DGCM,AOC的面积是15,CD:CO=1:3,OG:OM=2:3,ACD的面积是5,ODF的面积是15×=,四边形AMGF的面积=,BOE的面积=AOM的面积=×=12,ADC与BOE的面积和为5+12=1,故答案为:1.15、【解析】设PM=x,根据黄金分割的概念列出比例式,计算即可【详解】设PM=x,则PN=1-x,由得,化简得:x2+x-1=0,解得:x1,x2(负值舍去),所以PM的长为【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割16、2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E则ADBE,AD=2BE=,B、E分别是AC、DC的中点ADCBEC,BE:AD=1:2,EC:CD=1:2,EC=DE=a,OC=3a,又A(a, ),B(2a, ),SAOC=AD×CO=×3a× =1,解得:k=217、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.18、 (-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1又因为B6在x轴负半轴,所以B6(-1,0)解:如图所示正方形OBB1C,OB1=,B1所在的象限为第一象限;OB2=()2,B2在x轴正半轴;OB3=()3,B3所在的象限为第四象限;OB4=()4,B4在y轴负半轴;OB5=()5,B5所在的象限为第三象限;OB6=()6=1,B6在x轴负半轴B6(-1,0)故答案为(-1,0)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) 反比例函数的解析式为y=,一次函数的解析式为y=x+1(2)2.【解析】(1)根据反比例函数y2=的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据SAOB=SAOCSBOC,列式计算即可【详解】(1)反比例函数y2=的图象过A(2,3),B(6,n)两点,m=2×3=6n,m=6,n=1,反比例函数的解析式为y=,B的坐标是(6,1)把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,一次函数的解析式为y=x+1(2)如图,设直线y=x+1与x轴交于C,则C(2,0)SAOB=SAOCSBOC=×2×3×2×1=121=2【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出SAOB=SAOCSBOC是解题的关键20、(1)该一次函数解析式为y=x+1(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,该一次函数解析式为y=x+1;(2)当y=x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升530520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.21、(1)2.1;(2)见解析;(3)x2时,函数有最小值y4.2【解析】(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值【详解】(1)当点P运动到点H时,AH=3,作HNAB于点N在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,HAN=42°,AN=HN=AHsin42°=3,HM,HB,HM+HN=2.122+2.8342.1故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2故答案为:4.2【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22、(1)ab4x1(1)【解析】(1)边长为x的正方形面积为x1,矩形面积减去4个小正方形的面积即可(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可【详解】解:(1)ab4x1(1)依题意有:,将a=6,b=4,代入上式,得x1=2解得x1=,x1=(舍去)正方形的边长为23、见解析【解析】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x()2+4可得当x=2,y有最小值,则可求篱笆长【详解】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2xx()2+()2=()2+4,x4,2x1,当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米故答案为:y=2x,2,1【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式24、【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算解题过程中注意运算顺序解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.25、(1)B(0,1);(1)y=0.5x11x+1;(3)P1(1,0)和P1(7.15,0);【解析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1得出可设二次函数y=ax1+bx+c=a(x1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可【详解】(1)y=x+1交x轴于点A(4,0),0=×(4)+m,m=1,与y轴交于点B,x=0,y=1B点坐标为:(0,1),(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1可设二次函数y=a(x1)1把B(0,1)代入得:a=0.5二次函数的解析式:y=0.5x11x+1;(3)()当B为直角顶点时,过B作BP1AD交x轴于P1点由RtAOBRtBOP1,得:OP1=1,P1(1,0),()作P1DBD,连接BP1,将y=0.5x+1与y=0.5x11x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时DAP1=BAO,BOA=ADP1,ABOAP1D, ,解得:AP1=11.15,则OP1=11.154=7.15,故P1点坐标为(7.15,0);点P的坐标为:P1(1,0)和P1(7.15,0) 【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解26、(1)(2)(3)【解析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1(3)运用变化规律计算【详解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+a100.27、(1)A1(1,2),B1(2,1);(2)【解析】(1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;(2)根据旋转变换的性质、扇形面积公式计算【详解】(1)如图所示:A1(1,2),B1(2,1);(2)将AOB绕点O顺时针旋转90°的A2OB2如图所示: 线段OB扫过的面积为:【点睛】此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.