陕西省西安市交大附中2023年中考数学对点突破模拟试卷含解析.doc
-
资源ID:88311610
资源大小:1.09MB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
陕西省西安市交大附中2023年中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1下列运算正确的是()Ax3+x3=2x6Bx6÷x2=x3C(3x3)2=2x6Dx2x3=x12等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x212x+k=0的两个根,则k的值是()A27B36C27或36D183某运动会颁奖台如图所示,它的主视图是( )ABCD4如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()ABGFDG HD平分EHG AGBE SHDG:SHBG=tanDAG 线段DH的最小值是22ABCD5如图给定的是纸盒的外表面,下面能由它折叠而成的是( )ABCD6若关于x的不等式组无解,则a的取值范围是()Aa3Ba3Ca3Da37如图,在O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:ABCD; AOB=4ACD;弧AD=弧BD;PO=PD,其中正确的个数是()A4B1C2D38如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD9已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D410第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于_(结果用、的线性组合表示)12若a2+32b,则a32ab+3a_13函数y=中自变量x的取值范围是_14对于任意实数a、b,定义一种运算:ab=aba+b1例如,15=1×51+51=ll请根据上述的定义解决问题:若不等式3x1,则不等式的正整数解是_15的相反数是_16如图,已知ABC中,ABC50°,P为ABC内一点,过点P的直线MN分別交AB、BC于点M、N若M在PA的中垂线上,N在PC的中垂线上,则APC的度数为_三、解答题(共8题,共72分)17(8分)如图,已知,等腰RtOAB中,AOB=90°,等腰RtEOF中,EOF=90°,连结AE、BF求证:(1)AE=BF;(2)AEBF18(8分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.19(8分)如果a2+2a-1=0,求代数式的值.20(8分)如图,在平行四边形中,的平分线与边相交于点 (1)求证; (2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形21(8分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由22(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查根据调查数据绘制了如下所示不完整统计图条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?23(12分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由24凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(3a3)29a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2x3=x1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.2、B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由=0可求出k的值,再求出方程的两个根进行判断即可试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-33×3+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意故k的值为3故选B考点:3等腰三角形的性质;3一元二次方程的解3、C【解析】从正面看到的图形如图所示:,故选C4、B【解析】首先证明ABEDCF,ADGCDG(SAS),AGBCGB,利用全等三角形的性质,等高模型、三边关系一一判断即可【详解】解:四边形ABCD是正方形,AB=CD,BAD=ADC=90°,ADB=CDB=45°.在ABE和DCF中,AB=CD,BAD=ADC,AE=DF,ABEDCF,ABE=DCF.在ADG和CDG中,AD=CD,ADB=CDB,DG=DG,ADGCDG,DAG=DCF,ABE=DAG.DAG+BAH=90°,BAE+BAH=90°,AHB=90°,AGBE,故正确,同理可证:AGBCGB.DFCB,CBGFDG,ABGFDG,故正确.SHDG:SHBG=DG:BG=DF:BC=DF:CD=tanFCD,DAG=FCD,SHDG:SHBG=tanFCD=tanDAG,故正确.取AB的中点O,连接OD、OH.正方形的边长为4,AO=OH=×4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1无法证明DH平分EHG,故错误,故正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.5、B【解析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.6、A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可【详解】不等式组无解,a43a+2,解得:a3,故选A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.7、D【解析】根据垂径定理,圆周角的性质定理即可作出判断【详解】P是弦AB的中点,CD是过点P的直径ABCD,弧AD=弧BD,故正确,正确;AOB=2AOD=4ACD,故正确P是OD上的任意一点,因而不一定正确故正确的是:故选:D【点睛】本题主要考查了垂径定理,圆周角定理,正确理解定理是关键平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.8、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90°,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键9、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=93×2(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2×32×3+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键10、B【解析】先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解【详解】有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B【点睛】本题考查了简单事件的概率用到的知识点为:概率=所求情况数与总情况数之比二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据三角形法则求出即可解决问题;【详解】如图,=, =,=+=-,BD=BC,=故答案为【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型12、1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值【详解】解:a2+3=2b,a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键13、x且x1【解析】根据分式有意义的条件、二次根式有意义的条件列式计算【详解】由题意得,2x+30,x-10,解得,x-且x1,故答案为:x-且x1【点睛】本题考查的是函数自变量的取值范围,当表达式的分母不含有自变量时,自变量取全体实数当表达式的分母中含有自变量时,自变量取值要使分母不为零当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零14、2【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论【详解】3x=3x3+x22,x,x为正整数,x=2,故答案为:2【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x是解题的关键15、【解析】根据只有符号不同的两个数叫做互为相反数解答【详解】的相反数是.故答案为.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.16、115°【解析】根据三角形的内角和得到BAC+ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到MAP=APM,CPN=PCN,推出MAP+PCN=PAC+ACP=×130°=65°,于是得到结论【详解】ABC=50°,BAC+ACB=130°,若M在PA的中垂线上,N在PC的中垂线上,AM=PM,PN=CN,MAP=APM,CPN=PCN,APC=180°-APM-CPN=180°-PAC-ACP,MAP+PCN=PAC+ACP=×130°=65°,APC=115°,故答案为:115°【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键三、解答题(共8题,共72分)17、见解析【解析】(1)可以把要证明相等的线段AE,CF放到AEO,BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去BOE的结果,所以相等,由此可以证明AEOBFO;(2)由(1)知:OAC=OBF,BDA=AOB=90°,由此可以证明AEBF【详解】解:(1)证明:在AEO与BFO中,RtOAB与RtEOF等腰直角三角形,AO=OB,OE=OF,AOE=90°-BOE=BOF,AEOBFO,AE=BF;( 2)延长AE交BF于D,交OB于C,则BCD=ACO由(1)知:OAC=OBF,BDA=AOB=90°,AEBF18、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即可;(2)作AMx轴,BNx轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可详解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键19、1 【解析】=1.故答案为1.20、(1)见解析;(2)菱形.【解析】(1)根据角平分线的性质可得ADE=CDE,再由平行线的性质可得ABCD,易得AD=AE,从而可证得结论;(2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)DE平分ADC,ADE=CDE.四边形ABCD是平行四边形,ABCD,AB=CD,AD=BC,AB=CD.AED=CDE.ADE=AED.AD=AE.BC=AE.AB=AE+EB.BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,点E与B重合,AD=AB.四边形ABCD是平行四边形平行四边形ABCD为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.21、(1)见解析;(2)AFCE,见解析.【解析】(1)直接利用全等三角三角形判定与性质进而得出FOCEOA(ASA),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案【详解】(1)证明:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,AO=CO,DCAB,DC=AB,FCA=CAB,在FOC和EOA中,FOCEOA(ASA),FC=AE,DC-FC=AB-AE,即DF=EB;(2)AFCE,理由:FC=AE,FCAE,四边形AECF是平行四边形,AFCE【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出FOCEOA(ASA)是解题关键22、(1)作图见解析;(2)1【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人答:该校九年级大约有1名志愿者23、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标24、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论