陕西省铜川市王益区2023年高考数学考前最后一卷预测卷含解析.doc
-
资源ID:88311692
资源大小:1.87MB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
陕西省铜川市王益区2023年高考数学考前最后一卷预测卷含解析.doc
2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,且,则在方向上的投影为( )ABCD2已知在中,角的对边分别为,若函数存在极值,则角的取值范围是( )ABCD3第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为( )ABCD4已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称5在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )AB3CD6若复数,则( )ABCD207已知定义在上的函数,则,的大小关系为( )ABCD8已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为ABCD9下列选项中,说法正确的是( )A“”的否定是“”B若向量满足 ,则与的夹角为钝角C若,则D“”是“”的必要条件10在中,角所对的边分别为,已知,则( )A或BCD或11某几何体的三视图如图所示,则该几何体的体积为( )ABCD12已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最小值为_.14已知a,b均为正数,且,的最小值为_.15在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为_.16下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,求的最小值.18(12分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.19(12分)已知集合,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,都有.20(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.21(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,点,求的值22(10分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由向量垂直的向量表示求出,再由投影的定义计算【详解】由可得,因为,所以故在方向上的投影为故选:C【点睛】本题考查向量的数量积与投影掌握向量垂直与数量积的关系是解题关键2、C【解析】求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论【详解】,.若存在极值,则,又.又故选:C【点睛】本题考查导数与极值,考查余弦定理掌握极值存在的条件是解题关键3、B【解析】根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.4、C【解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.5、D【解析】设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或.故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.6、B【解析】化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.7、D【解析】先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.【详解】当时,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.【点睛】本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.8、C【解析】将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为故选C9、D【解析】对于A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2bm2,但是ab不一定成立;对于D根据元素与集合的关系即可做出判断【详解】选项A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2bm2,但是ab不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.10、D【解析】根据正弦定理得到,化简得到答案.【详解】由,得,或,或故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.11、D【解析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.12、B【解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作出约束条件所表示的可行域,利用直线截距的几何意义,即可得答案.【详解】画出可行域易知在点处取最小值为.故答案为:【点睛】本题考查简单线性规划的最值,考查数形结合思想,考查运算求解能力,属于基础题.14、【解析】本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.【详解】因为,所以,当且仅当,即、时取等号,故答案为:.【点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.15、【解析】设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,所以平面,所以.由于,所以,也即,所以四边形是矩形. 而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.16、32【解析】由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【点睛】本题考查分层抽样中求样本容量,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 【解析】讨论和的情况,然后再分对称轴和区间之间的关系,最后求出最小值【详解】当时,它在上是减函数故函数的最小值为当时,函数的图象思维对称轴方程为当时,函数的最小值为当时,函数的最小值为当时,函数的最小值为综上,【点睛】本题主要考查了二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题。18、(1)见解析;(2)【解析】(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.【详解】(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.由题意易知,所以,因为,所以平面,又平面,所以.(2)设,由已知可得:平面平面,所以,同理可得:,所以四边形为平行四边形,所以为的中点,为的中点,所以平行且相等,从而平面,又,所以,两两垂直,如图,建立空间直角坐标系,由平面几何知识,得.则,所以,.设平面的法向量为,由,可得,令,则,所以.同理,平面的一个法向量为.设平面与平面所成角为,则,所以.【点睛】本题考查了线面垂直的判定定理及二面角的平面角的求法,重点考查了空间向量的应用,属中档题.19、;证明见解析.【解析】当时,集合共有个子集,即可求出结果;分类讨论,利用数学归纳法证明.【详解】当时,集合共有个子集,所以;当时,由可知,此时令,满足对任意,都有,且;假设当时,存在有序集合组满足题意,且,则当时,集合的子集个数为个,因为是4的整数倍,所以令,且恒成立,即满足对任意,都有,且,综上,原命题得证.【点睛】本题考查集合的自己个数的研究,结合数学归纳法的应用,属于难题.20、(1)证明见解析;(2).【解析】(1)令,求导,可知单调递增,且,因而在上存在零点,在此取得最小值,再证最小值大于零即可.(2)根据题意得到在点处的切线的方程,再设直线与相切于点, 有,即,再求得在点处的切线直线的方程为 由可得,即,根据,转化为,令,转化为要使得在上存在零点,则只需,求解.【详解】(1)证明:设,则,单调递增,且,因而在上存在零点,且在上单调递减,在上单调递增,从而的最小值为.所以,即.(2),故,故切线的方程为设直线与相切于点,注意到,从而切线斜率为,因此,而,从而直线的方程也为 由可知,故,由为正整数可知,所以,令,则,当时,为单调递增函数,且,从而在上无零点;当时,要使得在上存在零点,则只需,因为为单调递增函数,所以;因为为单调递增函数,且,因此;因为为整数,且,所以.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.21、(),曲线 ()【解析】试题分析:(1)消去参数可得直线的直角坐标系方程,由可得曲线的直角坐标方程;(2)将(为参数)代入曲线的方程得:,利用韦达定理求解即可.试题解析:(1),曲线,(2)将(为参数)代入曲线的方程得:.所以.所以.22、(1)(2)2 期望值为X900600300100P【解析】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D 级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,即,由得,所以当时,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件. 由上可得一件手工艺品质量为A 级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C 级的概率为,一件手工艺品质量为D 级的概率为,所以X的分布列为X900600300100P则期望为.