陕西省重点中学2023届中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则ACB等于()AEDBBBEDCEBDD2ABF2关于的方程有实数根,则满足( )AB且C且D35的倒数是AB5CD54下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A1个B2个C3个D4个5苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元6对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A60°,的补角120°,B90°,的补角90°,C100°,的补角80°,D两个角互为邻补角7如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB1,CD3,那么EF的长是( )ABCD8如图,矩形ABCD内接于O,点P是上一点,连接PB、PC,若AD=2AB,则cosBPC的值为()ABCD9如图,在矩形ABCD中,O为AC中点,EF过O点且EFAC分别交DC于F,交AB于点E,点G是AE中点且AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)OGE是等边三角形;(4). A1B2C3D410如图,在等腰直角三角形ABC中,C=90°,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD11若2mn6,则代数式m-n+1的值为()A1B2C3D412对于非零的两个实数、,规定,若,则的值为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_14甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:_15计算的结果等于_.16要使式子有意义,则的取值范围是_17请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分A如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为_B比较_的大小18若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?20(6分)某公司为了扩大经营,决定购进6台机器用于生产某活塞现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060 (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?21(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整(1)按如下分数段整理、描述这两组数据:成绩x学生70x7475x7980x8485x8990x9495x100甲_乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲_83.7_8613.21乙2483.782_46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选_(填“甲”或“乙),理由为_22(8分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由23(8分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积24(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将两个统计图补充完整;(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生现从这5名学生中任意抽取2名学生请用画树状图或列表的方法,求出刚好抽到同性别学生的概率25(10分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长26(12分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明27(12分)如图,在中,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC依题意补全图形;求的度数;若,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据全等三角形的判定与性质,可得ACB=DBE的关系,根据三角形外角的性质,可得答案.【详解】在ABC和DEB中,所以ABCBDE(SSS),所以ACB=DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.2、A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)×(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义3、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C4、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形故选:C【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形5、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.6、C【解析】熟记反证法的步骤,然后进行判断即可解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、的补角,符合假命题的结论,故A错误;B、的补角=,符合假命题的结论,故B错误;C、的补角,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误故选C7、C【解析】易证DEFDAB,BEFBCD,根据相似三角形的性质可得= ,=,从而可得+=+=1然后把AB=1,CD=3代入即可求出EF的值【详解】AB、CD、EF都与BD垂直,ABCDEF,DEFDAB,BEFBCD,= ,=,+=+=1.AB=1,CD=3,+=1,EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.8、A【解析】连接BD,根据圆周角定理可得cosBDC=cosBPC,又BD为直径,则BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cosBDC=,即可得出结论.【详解】连接BD,四边形ABCD为矩形,BD过圆心O,BDC=BPC(圆周角定理)cosBDC=cosBPCBD为直径,BCD=90°,=,设DC为x,则BC为2x,BD=x,cosBDC=,cosBDC=cosBPC,cosBPC=.故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.9、C【解析】EFAC,点G是AE中点,OG=AG=GE=AE,AOG=30°,OAG=AOG=30°,GOE=90°-AOG=90°-30°=60°,OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,O为AC中点,AC=2AO=2,BC=AC=,在RtABC中,由勾股定理得,AB=3a,四边形ABCD是矩形,CD=AB=3a,DC=3OG,故(1)正确;OG=a,BC=,OGBC,故(2)错误;SAOE=a=,SABCD=3a=32,SAOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.10、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45°,由三角形外角性质得CDF+45°=BED+45°,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A11、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式×6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.12、D【解析】试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.考点:1.新运算;2.分式方程.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题解析:如图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2OA=6,这个菱形的面积为:ACBD=×6×8=114、【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.15、a3【解析】试题解析:x5÷x2=x3.考点:同底数幂的除法.16、【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x0,解得:x2,故答案为x2.17、5 【解析】A:根据平移的性质得到OAOA,OOBB,根据点A在直线求出A的横坐标,进而求出OO的长度,最后得到BB的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.【详解】A:由平移的性质可知,OAOA4,OOBB.因为点A在直线上,将y4代入,得到x5.所以OO5,又因为OOBB,所以点B与其对应点B间的距离为5.故答案为5.B:sin53°cos(90°53°)cos37°,tan37° ,根据正切函数与余弦函数图像可知,tan37°tan30°,cos37°cos45°,即tan37° ,cos37° ,又,tan37°cos37°,即sin53°tan37°.故答案是.【点睛】本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.18、【解析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】圆锥的底面圆的周长是,圆锥的侧面扇形的弧长为 cm,解得:故答案为【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得【详解】(1)840÷35%=2400(人),该区抽样调查的人数是2400人;(2)2400×25%=600(人),该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:×360°=21.6°,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比20、(1)有3种购买方案购乙6台,购甲1台,购乙5台,购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数34万元就可以得到关于x的不等式,就可以求出x的范围(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数380件根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案【详解】解:(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)34解这个不等式,得x2,即x可取0,1,2三个值.该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)380解之得x> 由(1)得x2,即x2.x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. 为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案21、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】(1)根据折线统计图数字进行填表即可; (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,70x74无,共0个;75x79之间有75,共1个;80x84之间有84,82,1,83,共4个;85x89之间有89,86,86,85,86,共5个;90x94之间和95x100无,共0个故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为8975=14分;甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,中位数为(8485)84.5;乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小或:乙,理由:在90x100的分数段中,乙的次数大于甲(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据22、(1)抛物线的解析式为;(2)PM=(0m3);(3)存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长(3)由于PFC和AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和AEM相似时,分两种情况进行讨论:PFCAEM,CFPAEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出PCM的形状【详解】解:(1)抛物线(a0)经过点A(3,0),点C(0,4),解得抛物线的解析式为(2)设直线AC的解析式为y=kx+b,A(3,0),点C(0,4),解得直线AC的解析式为点M的横坐标为m,点M在AC上,M点的坐标为(m,)点P的横坐标为m,点P在抛物线上,点P的坐标为(m,)PM=PEME=()()=PM=(0m3)(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似理由如下:由题意,可得AE=3m,EM=,CF=m,PF=,若以P、C、F为顶点的三角形和AEM相似,分两种情况:若PFCAEM,则PF:AE=FC:EM,即():(3m)=m:(),m0且m3,m=PFCAEM,PCF=AMEAME=CMF,PCF=CMF在直角CMF中,CMF+MCF=90°,PCF+MCF=90°,即PCM=90°PCM为直角三角形若CFPAEM,则CF:AE=PF:EM,即m:(3m)=():(),m0且m3,m=1CFPAEM,CPF=AMEAME=CMF,CPF=CMFCP=CMPCM为等腰三角形综上所述,存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形23、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×3+×2×1,=3+1,=1考点:反比例函数与一次函数的交点问题24、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是【解析】试题分析:(1)由题意可得本次调查的学生共有:15÷30%;(2)先求出C的人数,再求出C的百分比即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案试题解析:(1)根据题意得: 15÷30%50(名)答;在这项调查中,共调查了50名学生;(2)图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是25、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算26、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好27、(1)见解析;(2)90°;(3)解题思路见解析.【解析】(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC(2)先判定ABDACE,即可得到,再根据,即可得出;(3)连接DE,由于ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在RtADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在RtAHF中,由AH和HF,利用勾股定理可求AF的长【详解】解:如图,线段AD绕点A逆时针方向旋转,得到线段AE,在和中,中,;连接DE,由于为等腰直角三角形,所以可求;由,可求的度数和的度数,从而可知DF的长;过点A作于点H,在中,由,可求AH、DH的长;由DF、DH的长可求HF的长;在中,由AH和HF,利用勾股定理可求AF的长故答案为(1)见解析;(2)90°;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角