福建省漳州市龙海市市级名校2022-2023学年中考数学四模试卷含解析.doc
-
资源ID:88312319
资源大小:585.50KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
福建省漳州市龙海市市级名校2022-2023学年中考数学四模试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直线被直线所截,下列条件中能判定的是( )ABCD2甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件设乙每天完成x个零件,依题意下面所列方程正确的是()ABCD3如图,已知,那么下列结论正确的是( )ABCD4下列计算错误的是()A4x32x2=8x5 Ba4a3=aC(x2)5=x10 D(ab)2=a22ab+b25如图所示,直线ab,1=35°,2=90°,则3的度数为()A125°B135°C145°D155°6如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A28cm2B27cm2C21cm2D20cm27方程x23x+20的解是()Ax11,x22Bx11,x22Cx11,x22Dx11,x228如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A2.6m2B5.6m2C8.25m2D10.4m29一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-710若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )A1,2,3B1,2C1,3D2,3二、填空题(共7小题,每小题3分,满分21分)11有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_(填写序号)如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;如果方程M有两根符号相同,那么方程N的两根符号也相同;如果方程M和方程N有一个相同的根,那么这个根必是x=1;如果5是方程M的一个根,那么是方程N的一个根12如图,将直尺与含30°角的三角尺摆放在一起,若1=20°,则2的度数是_.13圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm214如图,在RtAOB中,AOB90°,OA3,OB2,将RtAOB绕点O顺时针旋转90°后得RtFOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_15如图,在边长为4的菱形ABCD中,A=60°,M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则线段AC长度的最小值是_16计算的结果等于_17关于x的一元二次方程x22kx+k2k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12x1x2+x22的值是_三、解答题(共7小题,满分69分)18(10分)如图,半圆D的直径AB4,线段OA7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m当半圆D与数轴相切时,m 半圆D与数轴有两个公共点,设另一个公共点是C直接写出m的取值范围是 当BC2时,求AOB与半圆D的公共部分的面积当AOB的内心、外心与某一个顶点在同一条直线上时,求tanAOB的值19(5分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在1665岁之间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%20(8分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?21(10分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且ADE=60°.求证:ADCDEB22(10分)如图所示,点B、F、C、E在同一直线上,ABBE,DEBE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE23(12分)计算:(1)0+|1|÷+(1)124(14分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析:A、由3=2=35°,1=55°推知13,故不能判定ABCD,故本选项错误;B、由3=2=45°,1=55°推知13,故不能判定ABCD,故本选项错误;C、由3=2=55°,1=55°推知1=3,故能判定ABCD,故本选项正确;D、由3=2=125°,1=55°推知13,故不能判定ABCD,故本选项错误;故选C2、B【解析】根据题意设出未知数,根据甲所用的时间乙所用的时间,用时间列出分式方程即可.【详解】设乙每天完成x个零件,则甲每天完成(x+8)个. 即得, ,故选B.【点睛】找出甲所用的时间乙所用的时间这个关系式是本题解题的关键.3、A【解析】已知ABCDEF,根据平行线分线段成比例定理,对各项进行分析即可【详解】ABCDEF,故选A【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案4、B【解析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1可巧记为:“首平方,末平方,首末两倍中间放”可得答案【详解】A选项:4x31x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则5、A【解析】分析:如图求出5即可解决问题详解:ab,1=4=35°,2=90°,4+5=90°,5=55°,3=180°-5=125°,故选:A点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题6、B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC矩形FDCE,则 设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键7、A【解析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解【详解】解:原方程可化为:(x1)(x1)0,x11,x11故选:A【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解8、D【解析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可【详解】经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,小石子落在不规则区域的概率为0.65,正方形的边长为4m,面积为16 m2设不规则部分的面积为s m2则=0.65解得:s=10.4故答案为:D【点睛】利用频率估计概率9、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.10、C【解析】试题分析:解分式方程得:等式的两边都乘以(x2),得x=2(x2)+m,解得x=4m,且x=4m2,已知关于x的分式方的解为正数,得m=1,m=3,故选C考点:分式方程的解二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题解析:在方程ax2+bx+c=0中=b2-4ac,在方程cx2+bx+a=0中=b2-4ac,如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;和符号相同,和符号也相同,如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,ac,x2=1,解得:x=±1,错误;5是方程M的一个根,25a+5b+c=0,a+b+c=0,是方程N的一个根,正确故正确的是12、50°【解析】先根据三角形外角的性质求出BEF的度数,再根据平行线的性质得到2的度数【详解】如图所示:BEF是AEF的外角,1=20°,F=30°,BEF=1+F=50°,ABCD,2=BEF=50°,故答案是:50°【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和)13、60【解析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解解:圆锥的侧面积=×6×10=60cm114、8【解析】分析:如下图,过点D作DHAE于点H,由此可得DHE=AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,DEF=FEO+DEH=90°,ABO=FEO,结合ABO+BAO=90°可得BAO=DEH,从而可证得DEHBAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+SOEF+SADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DHAE于点H,DHE=AOB=90°,OA=3,OB=2,AB=,由旋转的性质结合已知条件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,DEF=FEO+DEH=90°,ABO=FEO,又ABO+BAO=90°,BAO=DEH,DEHBAO,DH=BO=2,S阴影=S扇形AOF+SOEF+SADE-S扇形DEF=.故答案为:.点睛:作出如图所示的辅助线,利用旋转的性质证得DEHBAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+SOEF+SADE-S扇形DEF来计算是解答本题的关键.15、 【解析】解:如图所示:MA是定值,AC长度取最小值时,即A在MC上时,过点M作MFDC于点F,在边长为2的菱形ABCD中,A=60°,M为AD中点,2MD=AD=CD=2,FDM=60°,FMD=30°,FD=MD=1,FM=DM×cos30°=,AC=MCMA=故答案为【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A点位置是解题关键16、【解析】分析:直接利用二次根式的性质进行化简即可详解:= 故答案为点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键17、1【解析】【分析】根据根与系数的关系结合x1+x2=x1x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值【详解】x22kx+k2k=0的两个实数根分别是x1、x2,x1+x2=2k,x1x2=k2k,x12+x22=1,(x1+x2)2-2x1x2=1,(2k)22(k2k)=1,2k2+2k1=0,k2+k2=0,k=2或1,=(2k)21×1×(k2k)0,k0,k=1,x1x2=k2k=0,x12x1x2+x22=10=1,故答案为:1【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式0”是解题的关键三、解答题(共7小题,满分69分)18、(1);(2);AOB与半圆D的公共部分的面积为;(3)tanAOB的值为或【解析】(1)根据题意由勾股定理即可解答(2)根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可如图,连接DC,得出BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,ABOB,由勾股定理得m ,故答案为 (2)半圆D与数轴相切时,只有一个公共点,此时m,当O、A、B三点在数轴上时,m7+411,半圆D与数轴有两个公共点时,m的取值范围为故答案为如图,连接DC,当BC2时,BCCDBD2,BCD为等边三角形,BDC60°,ADC120°,扇形ADC的面积为 , ,AOB与半圆D的公共部分的面积为 ;(3)如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,则72(4+x)242x2,解得x ,OH ,AH ,tanAOB,如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,则72(4x)242x2,解得x ,OH,AH,tanAOB综合以上,可得tanAOB的值为或【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线19、(1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得1130岁的人数所占百分比最大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.20、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=10x2+100x+2000,当x=5时,商场获取最大利润为2250元【解析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得【详解】解:(1)依题意得:(10080x)(100+10x)=2160,即x210x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(10080x)(100+10x)=10x2+100x+2000=10(x5)2+2250,100,当x=5时,y取得最大值为2250元答:y=10x2+100x+2000,当x=5时,商场获取最大利润为2250元【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式21、见解析【解析】根据等边三角形性质得B=C,根据三角形外角性质得CAD=BDE,易证.【详解】证明:ABC是等边三角形,B=C=60°,ADB=CAD+C= CAD+60°,ADE=60°,ADB=BDE+60°,CAD=BDE,【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.22、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90°,AC=DF,ABCDEF, AB=DE.23、2【解析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.【详解】解:原式=2+2+2=22+2=2【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.24、(1)50,10;(2)见解析.(3)16.8万【解析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24× 16.8(万).【详解】解:(1)本次被调查的学员共有:15÷30%50(人),在被调查者中参加“3科”课外辅导的有:50152050×10%10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:50×10%5(人),补全的条形统计图如右图所示;(3)24× 16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.