泰安市泰山区2023年中考数学模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1实数a在数轴上的位置如图所示,则化简后为()A7B7C2a15D无法确定2能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da3已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD4如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )ABCD5将一块直角三角板ABC按如图方式放置,其中ABC30°,A、B两点分别落在直线m、n上,120°,添加下列哪一个条件可使直线mn( )A220°B230°C245°D250°6如图,四边形ABCD中,ADBC,B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD27如图,ABC中,AB4,AC3,BC2,将ABC绕点A顺时针旋转60°得到AED,则BE的长为()A5B4C3D28如图,在平面直角坐标系中,把ABC绕原点O旋转180°得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)9的值等于( )ABCD10如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是()A1mBmC3mDm二、填空题(共7小题,每小题3分,满分21分)11把一张长方形纸条按如图所示折叠后,若AOB70°,则BOG_12如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,ADDC,则C_度.13如图,在中,AB为直径,点C在上,的平分线交于D,则_14如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(2,2),则k的值为_15四边形ABCD中,向量_.16近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:成绩(分)60708090100人 数4812115则该办学生成绩的众数和中位数分别是( )A70分,80分 B80分,80分 C90分,80分 D80分,90分17分解因:=_三、解答题(共7小题,满分69分)18(10分)如图1,已知DAC=90°,ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E(1)如图1,猜想QEP= °;(2)如图2,3,若当DAC是锐角或钝角时,其它条件不变,猜想QEP的度数,选取一种情况加以证明;(3)如图3,若DAC=135°,ACP=15°,且AC=4,求BQ的长19(5分)计算:(2)2sin45°+(1)2018÷220(8分)先化简,再求值:(x2y)2+(x+y)(x4y),其中x5,y21(10分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CEAB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长小何根据学习函数的经验,将此问题转化为函数问题解决小华假设AE的长度为xcm,线段DE的长度为ycm(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm01.62.53.34.04.7 5.85.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为 cm22(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D当时,判断线段PD与PC的数量关系,并说明理由;若,结合函数的图象,直接写出n的取值范围23(12分)如图,一次函数yax1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA,tanAOC(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax1的解集;(3)在y轴上存在一点P,使得PDC与ODC相似,请你求出P点的坐标24(14分)如图,AB是O的直径,CD与O相切于点C,与AB的延长线交于D(1)求证:ADCCDB;(2)若AC2,ABCD,求O半径参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据数轴上点的位置判断出a4与a11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果【详解】解:根据数轴上点的位置得:5a10,a40,a110,则原式|a4|a11|a4+a112a15,故选:C【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键2、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.3、D【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D4、B【解析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3CE=AC-AE=4-3=1在RtCED中,CD= 故选:B【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.5、D【解析】根据平行线的性质即可得到2=ABC+1,即可得出结论【详解】直线EFGH,2=ABC+1=30°+20°=50°,故选D【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键6、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC,B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90°,四边形ABHD为矩形,DH=AB=2EF,HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理7、B【解析】根据旋转的性质可得AB=AE,BAE=60°,然后判断出AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB【详解】解:ABC绕点A顺时针旋转 60°得到AED,AB=AE,BAE=60°,AEB是等边三角形,BE=AB,AB=1,BE=1故选B【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义8、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标9、C【解析】试题解析:根据特殊角的三角函数值,可知: 故选C.10、B【解析】由AGE=CHE=90°,AEG=CEH可证明AEGCEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=ABBG=61.5=4.5m,CH=CDDH=91.5=7.5m,AGEH,CHEH,AGE=CHE=90°,AEG=CEH,AEGCEH, = ,即 =,解得:GH=,则BD=GH=m,故选:B【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.二、填空题(共7小题,每小题3分,满分21分)11、55°【解析】由翻折性质得,BOGBOG,根据邻补角定义可得.【详解】解:由翻折性质得,BOGBOG,AOB+BOG+BOG180°,BOG(180°AOB)(180°70°)55°故答案为55°【点睛】考核知识点:补角,折叠.12、1【解析】利用圆周角定理得到ADB=90°,再根据切线的性质得ABC=90°,然后根据等腰三角形的判定方法得到ABC为等腰直角三角形,从而得到C的度数【详解】解:AB为直径,ADB=90°,BC为切线,ABBC,ABC=90°,AD=CD,ABC为等腰直角三角形,C=1°故答案为1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了等腰直角三角形的判定与性质13、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度14、1【解析】试题分析:设点C的坐标为(x,y),则B(2,y)D(x,2),设BD的函数解析式为y=mx,则y=2m,x=,k=xy=(2m)·()=1考点:求反比例函数解析式15、【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得: =.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.16、B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B考点:1.众数;2.中位数.17、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)三、解答题(共7小题,满分69分)18、(1)QEP=60°;(2)QEP=60°,证明详见解析;(3)【解析】(1)如图1,先根据旋转的性质和等边三角形的性质得出PCA=QCB,进而可利用SAS证明CQBCPA,进而得CQB=CPA,再在PEM和CQM中利用三角形的内角和定理即可求得QEP=QCP,从而完成猜想;(2)以DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明ACPBCQ,可得APC=Q,进一步即可证得结论;(3)仿(2)可证明ACPBCQ,于是AP=BQ,再求出AP的长即可,作CHAD于H,如图3,易证APC=30°,ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)QEP=60°;证明:连接PQ,如图1,由题意得:PC=CQ,且PCQ=60°,ABC是等边三角形,ACB=60°,PCA=QCB,则在CPA和CQB中, ,CQBCPA(SAS),CQB=CPA,又因为PEM和CQM中,EMP=CMQ,QEP=QCP=60°.故答案为60; (2)QEP=60°.以DAC是锐角为例.证明:如图2,ABC是等边三角形,AC=BC,ACB=60°,线段CP绕点C顺时针旋转60°得到线段CQ,CP=CQ,PCQ=60°,ACB+BCP=BCP+PCQ,即ACP=BCQ,在ACP和BCQ中, ,ACPBCQ(SAS),APC=Q,1=2,QEP=PCQ=60°; (3)连结CQ,作CHAD于H,如图3,与(2)一样可证明ACPBCQ,AP=BQ,DAC=135°,ACP=15°,APC=30°,CAH=45°,ACH为等腰直角三角形,AH=CH=AC=×4=,在RtPHC中,PH=CH=,PA=PHAH=,BQ=.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.19、 【解析】按照实数的运算顺序进行运算即可.【详解】解:原式 【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.20、2x27xy,1【解析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.【详解】原式x24xy+4y2+x24xy+xy4y22x27xy,当x5,y时,原式5071【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.21、(1)5.3(2)见解析(3)2.5或6.9【解析】(1)(2)按照题意取点、画图、测量即可(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想22、(1)(2)判断:理由见解析;或【解析】(1)利用代点法可以求出参数 ;(2)当时,即点P的坐标为,即可求出点的坐标,于是得出;根据中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)函数的图象经过点,将点代入,即 ,得: 直线与轴交于点,将点代入,即 ,得: (2)判断: 理由如下:当时,点P的坐标为,如图所示:点C的坐标为 ,点D的坐标为 , 由可知当时所以由图像可知,当直线往下平移的时也符合题意,即 ,得;当时,点P的坐标为点C的坐标为 ,点D的坐标为 ,当 时,即,也符合题意,所以 的取值范围为:或 【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.23、(1)a= ,k=3, B(-,-2) (2) x0或x3;(3) (0,)或(0,0)【解析】1)过A作AEx轴,交x轴于点E,在RtAOE中,根据tanAOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;(3)显然P与O重合时,满足PDC与ODC相似;当PCCD,即PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.【详解】解:(1)过A作AEx轴,交x轴于点E,在RtAOE中,OA=,tanAOC=,设AE=x,则OE=3x,根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=1(舍去),OE=3,AE=1,即A(3,1),将A坐标代入一次函数y=ax1中,得:1=3a1,即a=,将A坐标代入反比例解析式得:1=,即k=3,联立一次函数与反比例解析式得:,消去y得: x1=,解得:x=或x=3,将x=代入得:y=11=2,即B(,2);(2)由A(3,1),B(,2),根据图象得:不等式x1的解集为x0或x3;(3)显然P与O重合时,PDCODC;当PCCD,即PCD=90°时,PCO+DCO=90°,PCD=COD=90°,PCD=CDO,PDCCDO,PCO+CPO=90°,DCO=CPO,POC=COD=90°,PCOCDO,=,对于一次函数解析式y=x1,令x=0,得到y=1;令y=0,得到x=,C(,0),D(0,1),即OC=,OD=1,=,即OP=,此时P坐标为(0,),综上,满足题意P的坐标为(0,)或(0,0)【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键24、(1)见解析;(2) 【解析】分析: (1)首先连接CO,根据CD与O相切于点C,可得:OCD=90°;然后根据AB是圆O的直径,可得:ACB=90°,据此判断出CAD=BCD,即可推得ADCCDB(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据ADCCDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出O半径是多少详解:(1)证明:如图,连接CO,CD与O相切于点C,OCD=90°,AB是圆O的直径,ACB=90°,ACO=BCD,ACO=CAD,CAD=BCD,在ADC和CDB中,ADCCDB(2)解:设CD为x,则AB=x,OC=OB=x,OCD=90°,OD=x,BD=ODOB=xx=x,由(1)知,ADCCDB,=,即,解得CB=1,AB=,O半径是点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握