福建省福州市第二中学2023年中考数学猜题卷含解析.doc
-
资源ID:88312439
资源大小:1.07MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
福建省福州市第二中学2023年中考数学猜题卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米ABC+1D32一元二次方程x22x0的根是()Ax2Bx0Cx10,x22Dx10,x223如图,将ABC沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A42B96C84D484关于x的一元二次方程x22x+k+20有实数根,则k的取值范围在数轴上表示正确的是( )ABCD5已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )A3.1; B4; C2; D6.16已知,下列说法中,不正确的是( )AB与方向相同CD7某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A0.69×106B6.9×107C69×108D6.9×1078如图数轴的A、B、C三点所表示的数分别为a、b、c若|ab|3,|bc|5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A在A的左边B介于A、B之间C介于B、C之间D在C的右边9下列运算正确的是()A3a22a2=1Ba2a3=a6C(ab)2=a2b2D(a+b)2=a2+2ab+b210完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m11如图,在ABC中,点D,E分别在边AB,AC上,且,则的值为A B C D12如图,已知点E在正方形ABCD内,满足AEB=90°,AE=6,BE=8,则阴影部分的面积是()A48B60C76D80二、填空题:(本大题共6个小题,每小题4分,共24分)13我国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_个14方程x+1=的解是_15如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为_m.16如果抛物线y=x2+(m1)x+3经过点(2,1),那么m的值为_17在ABC中,BAC45°,ACB75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_18已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;,c是关于x的一元二次方程的两个实数根;其中正确结论是_填写序号三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在RtABC中,CD,CE分别是斜边AB上的高,中线,BCa,ACb若a3,b4,求DE的长;直接写出:CD (用含a,b的代数式表示);若b3,tanDCE=,求a的值20(6分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90°,ADC=60°,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90°,ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 21(6分)已知AB是O的直径,弦CD与AB相交,BAC40°(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数22(8分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45°,OC=2,求弦CD的长23(8分)如图,AB是O的直径,D、D为O上两点,CFAB于点F,CEAD交AD的延长线于点E,且CE=CF.(1)求证:CE是O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.24(10分)如图,BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90°(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比25(10分)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ(1)当POQ 时,PQ有最大值,最大值为 ;(2)如图2,若P是OB中点,且QPOB于点P,求的长;(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B恰好落在OA的延长线上,求阴影部分面积26(12分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字放回后洗匀,再从中抽取一张卡片,记录下数字请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率27(12分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°已知平台的纵截面为矩形DCFE,DE2米,DC20米,求古塔AB的高(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】由题意可知,AC=1,AB=2,CAB=90°据勾股定理则BC=m;AC+BC=(1+)m. 答:树高为(1+)米故选C.2、C【解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【详解】方程变形得:x(x1)0,可得x0或x10,解得:x10,x11故选C【点睛】考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键3、D【解析】由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO=(AB+OE)BE=(10+6)×6=1故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.4、C【解析】由一元二次方程有实数根可知0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围【详解】关于x的一元二次方程x22x+k+2=0有实数根,=(2)24(k+2)0,解得:k1,在数轴上表示为:故选C.【点睛】本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.5、A【解析】数据组2、x、8、1、1、2的众数是2,x=2,这组数据按从小到大排列为:2、2、2、1、1、8,这组数据的中位数是:(2+1)÷2=3.1.故选A.6、A【解析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用【详解】A、,故该选项说法错误B、因为,所以与的方向相同,故该选项说法正确,C、因为,所以,故该选项说法正确,D、因为,所以;故该选项说法正确,故选:A【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量零向量和任何向量平行7、B【解析】试题解析:0.00 000 069=6.9×10-7,故选B点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定8、C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论解析:|ab|=3,|bc|=5,b=a+3,c=b+5,原点O与A、B的距离分别为1、1,a=±1,b=±1,b=a+3,a=1,b=1,c=b+5,c=1点O介于B、C点之间故选C点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键9、D【解析】根据合并同类项法则,可知3a22a2= a2,故不正确;根据同底数幂相乘,可知a2a3=a5,故不正确;根据完全平方公式,可知(ab)2=a22ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!10、D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D11、C【解析】,A=A,ABCAED。故选C。12、C【解析】试题解析:AEB=90°,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力14、x=1【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1故答案为x=115、3【解析】试题分析:如图,CDABMN,ABECDE,ABFMNF,即,解得:AB=3m,答:路灯的高为3m考点:中心投影16、2【解析】把点(2,1)代入y=x2+(m1)x+3,即可求出m的值.【详解】抛物线y=x2+(m1)x+3经过点(2,1),1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.17、【解析】连接CD在根据垂直平分线的性质可得到ADC为等腰直角三角形,结合已知的即可得到BCD的大小,然后就可以解答出此题【详解】解:连接CD,DE垂直平分AC,ADCD,DCABAC45°,ADC是等腰直角三角形,ADC90°,BDC90°,ACB75°,BCD30°,BC ,故答案为【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明ADC为等腰直角三角形18、【解析】试题解析:抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),bc0,故正确;a1时,则b、c均小于0,此时b+c0,当a=1时,b+c=0,则与题意矛盾,当0a1时,则b、c均大于0,此时b+c0,故错误;可以转化为:,得x=b或x=c,故正确;b,c是关于x的一元二次方程的两个实数根,abc=a(b+c)=a+(a1)=2a1,当a1时,2a13,当0a1时,12a13,故错误;故答案为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2);(3).【解析】(1)求出BE,BD即可解决问题(2)利用勾股定理,面积法求高CD即可(3)根据CD3DE,构建方程即可解决问题【详解】解:(1)在RtABC中,ACB91°,a3,b4,CD,CE是斜边AB上的高,中线,BDC91°,在RtBCD中,(2)在RtABC中,ACB91°,BCa,ACb,故答案为:(3)在RtBCD中,又,CD3DE,即b3,2a9a2,即a2+2a91由求根公式得(负值舍去),即所求a的值是【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20、(1)3 ,(2)见解析【解析】(1)易证ABDCBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90°,ABDCBD(HL)ADB=CDB=ADC=30°,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.21、(1)45°;(2)26°【解析】(1)根据圆周角和圆心角的关系和图形可以求得ABC和ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得OCD的大小【详解】(1)AB是O的直径,BAC=38°, ACB=90°,ABC=ACBBAC=90°38°=52°,D为弧AB的中点,AOB=180°,AOD=90°,ABD=45°;(2)连接OD,DP切O于点D,ODDP,即ODP=90°,DPAC,BAC=38°,P=BAC=38°,AOD是ODP的一个外角,AOD=P+ODP=128°,ACD=64°,OC=OA,BAC=38°,OCA=BAC=38°,OCD=ACDOCA=64°38°=26°【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22、(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30°,从而求出OAB=90°,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的切线,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60°,又B=CAB,B=30°,OAB=90°AB是O的切线(2)作AECD于点EO=60°,D=30°ACD=45°,AC=OC=2,在RtACE中,CE=AE=;D=30°,AD=2【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型23、(1)证明见解析;(2)【解析】(1)连接OC,AC,可先证明AC平分BAE,结合圆的性质可证明OCAE,可得OCB90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案【详解】(1)证明:连接OC,ACCFAB,CEAD,且CECFCAECABOCOA,CABOCACAEOCAOCAEOCEAEC180°,AEC90°,OCE90°即OCCE,OC是O的半径,点C为半径外端,CE是O的切线(2)解:ADCD,DACDCACAB,DCAB,CAEOCA,OCAD,四边形AOCD是平行四边形,OCADa,AB2a,CAECAB,CDCBa,CBOCOB,OCB是等边三角形,在RtCFB中,CF ,S四边形ABCD (DCAB)CF【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径24、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点25、(1);(2);(3)【解析】(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;(2)先判断出POQ60°,最后用弧长用弧长公式即可得出结论;(3)先在RtB'OP中,OP2+ ,解得OP ,最后用面积的和差即可得出结论【详解】解:(1)P是半径OB上一动点,Q是 上的一动点,当PQ取最大时,点Q与点A重合,点P与点B重合,此时,POQ90°,PQ , 故答案为:90°,10 ;(2)解:如图,连接OQ,点P是OB的中点,OPOB OQQPOB,OPQ90°在RtOPQ中,cosQOP ,QOP60°,lBQ ;(3)由折叠的性质可得, ,在RtB'OP中,OP2+ ,解得OP,S阴影S扇形AOB2SAOP.【点睛】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键26、见解析,.【解析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率27、古塔AB的高为(10+2)米【解析】试题分析:延长EF交AB于点G利用AB表示出EG,AC让EG-AC=1即可求得AB长试题解析:如图,延长EF交AB于点G设AB=x米,则BG=AB2=(x2)米则EG=(AB2)÷tanBEG=(x2),CA=AB÷tanACB=x则CD=EGAC=(x2)x=1解可得:x=10+2答:古塔AB的高为(10+2)米