福建省邵武市四中学片区2023届中考数学最后一模试卷含解析.doc
-
资源ID:88312629
资源大小:670KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
福建省邵武市四中学片区2023届中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,AB是O的直径,点E为BC的中点,AB=4,BED=120°,则图中阴影部分的面积之和为( )A1BCD2长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A205万BCD3下列运算正确的是()Aa6÷a2=a3 B(2a+b)(2ab)=4a2b2 C(a)2a3=a6 D5a+2b=7ab4某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差5为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是( )A甲、乙的众数相同B甲、乙的中位数相同C甲的平均数小于乙的平均数D甲的方差小于乙的方差6下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )ABCD7如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米8已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( ) ABCD9已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x310下列图形中,是正方体表面展开图的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11若一段弧的半径为24,所对圆心角为60°,则这段弧长为_12抛物线 的顶点坐标是_13如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CEAB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)DCF=BCD,(2)EF=CF;(3)SBEC=2SCEF;(4)DFE=3AEF14如图,ABC中,CDAB于D,E是AC的中点若AD=6,DE=5,则CD的长等于 15如图,ABC中,DE垂直平分AC交AB于E,A=30°,ACB=80°,则BCE=_ °16如图,RtABC中,BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_17如图,在ABC中,ABAC,AHBC,垂足为点H,如果AHBC,那么sinBAC的值是_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?19(5分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45°,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90°至ADG,通过证明AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90°,AB=AC,点E、F在边BC上,且EAF=45°,若BE=3,EF=5,求CF的长20(8分)如图所示,在中,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分21(10分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长22(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.23(12分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积24(14分)如图,矩形ABCD中,点E为BC上一点,DFAE于点F,求证:AEBCDF.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】连接AE,OD,OEAB是直径, AEB=90°又BED=120°,AED=30°AOD=2AED=60°OA=ODAOD是等边三角形A=60°又点E为BC的中点,AED=90°,AB=ACABC是等边三角形,EDC是等边三角形,且边长是ABC边长的一半2,高是BOE=EOD=60°,和弦BE围成的部分的面积=和弦DE围成的部分的面积阴影部分的面积=故选C2、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值3、B【解析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断4、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数5、D【解析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.6、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.7、C【解析】试题解析:在RtABO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C考点:解直角三角形的应用-仰角俯角问题8、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k1,b1因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限综上所述,符合条件的图象是C选项故选C考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系9、B【解析】试题分析:观察图象可知,抛物线y=x2bxc与x轴的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两交点之间,即1x1故选B考点:二次函数的图象10614410、C【解析】利用正方体及其表面展开图的特点解题【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体故选C【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形二、填空题(共7小题,每小题3分,满分21分)11、8【解析】试题分析:弧的半径为24,所对圆心角为60°,弧长为l=8故答案为8 【考点】弧长的计算12、(0,-1)【解析】a=2,b=0,c=-1,-=0, ,抛物线的顶点坐标是(0,-1),故答案为(0,-1).13、【解析】试题解析:F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,DCF=BCD,故此选项正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90°,AEC=ECD=90°,FM=EF,FC=FM,故正确;EF=FM,SEFC=SCFM,MCBE,SBEC2SEFC故SBEC=2SCEF错误;设FEC=x,则FCE=x,DCF=DFC=90°-x,EFC=180°-2x,EFD=90°-x+180°-2x=270°-3x,AEF=90°-x,DFE=3AEF,故此选项正确考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线14、1【解析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角ACD中,利用勾股定理来求线段CD的长度即可【详解】ABC中,CDAB于D,E是AC的中点,DE=5,DE=AC=5,AC=2在直角ACD中,ADC=90°,AD=6,AC=2,则根据勾股定理,得故答案是:115、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30°,再根据ACB=80°即可解答【详解】DE垂直平分AC,A=30°,AE=CE,ACE=A=30°,ACB=80°,BCE=80°-30°=1°故答案为:116、【解析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AEAC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AEAC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;RtABC中,BAC=90°,AB=3,AC=6,BC=9,SABC=ABAC=BCAF,3×6=9AF,AF=2,AA'=2AF=4,A'FD=DEC=90°,A'DF=CDE,A'=C,AEA'=BAC=90°,AEA'BAC,A'E=,即AD+DE的最小值是,故答案为【点睛】本题考查轴对称最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.17、 【解析】过点B作BDAC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可【详解】如图,过点B作BDAC于D,设AH=BC=2x,AB=AC,AHBC,BH=CH=BC=x,根据勾股定理得,AC=x,SABC=BCAH=ACBD,即2x2x=xBD,解得BC=x,所以,sinBAC=故答案为三、解答题(共7小题,满分69分)18、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得【详解】把C(6,-1)代入,得. 则反比例函数的解析式为,把代入,得,点D的坐标为(-2,3). 将C(6,-1)、D(-2,3)代入,得,解得.一次函数的解析式为,点B的坐标为(0,2),点A的坐标为(4,0). ,在在中,. 根据函数图象可知,当或时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用19、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90°至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90°,FCG=ACB+ACG=ACB+B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90°至ADG,可使AB与AD重合,ADC=ABE=90°,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90°,EAG=BAD=90°,EAF=15°,FAG=EAGEAF=90°15°=15°,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90°,AB=AC,将ABE绕点A顺时针旋转90°得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90°,FCG=ACB+ACG=ACB+B=90°,FG2=FC2+CG2=BE2+FC2;又EAF=15°,而EAG=90°,GAF=90°15°,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫20、(1)详见解析;(2)30°【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90°,3B=90°,解得:B=30°,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键21、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算22、甲建筑物的高度约为,乙建筑物的高度约为.【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案详解:如图,过点作,垂足为.则.由题意可知,.可得四边形为矩形.,.在中,.在中,. .答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用-仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般23、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=×2×3+×2×1,=3+1,=1考点:反比例函数与一次函数的交点问题24、见解析.【解析】利用矩形的性质结合平行线的性质得出CDF+ADF90°,进而得出CDFDAF,由ADBC,得出答案.【详解】四边形ABCD是矩形,ADC90°,ADBC,CDF+ADF90°,DFAE于点F,DAF+ADF90°,CDFDAF.ADBC,DAFAEB,AEBCDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出CDFDAF是解题关键.