重庆市开县陈家中学2023年高考数学二模试卷含解析.doc
2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若则( )Af(a)<f(b) <f(c)Bf(b) <f(c) <f(a)Cf(a) <f(c) <f(b)Df(c) <f(b) <f(a)2已知各项都为正的等差数列中,若,成等比数列,则( )ABCD3已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()4设全集,集合,则集合( )ABCD5如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )ABCD6等比数列的前项和为,若,则( )ABCD7复数(为虚数单位),则的共轭复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限8是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面10设函数满足,则的图像可能是ABCD11已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为( )A1.5B2.5C3.5D4.512九章算术中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A4B8CD二、填空题:本题共4小题,每小题5分,共20分。13双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_.14若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_.15已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为_16如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩形纸片中,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.(1)将l表示成的函数,并确定的取值范围;(2)求l的最小值及此时的值;(3)问当为何值时,的面积S取得最小值?并求出这个最小值.18(12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.19(12分)设函数,()讨论的单调性;()时,若,求证:20(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,证明:.21(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.22(10分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,可得,故.故选:C【点睛】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.2、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.3、B【解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.4、C【解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.5、A【解析】作于,于,分析可得,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.6、D【解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:,从而公比;那么,故选D考点:等比数列7、C【解析】由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,对应点为,在第三象限故选:C【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义掌握复数除法法则是解题关键8、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.9、B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误10、B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B11、D【解析】利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.12、B【解析】由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【点睛】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.14、【解析】将四面体补成一个正方体,通过正方体的对角线与球的半径的关系,得到球的半径,利用球的表面积公式,即可求解.【详解】如图所示,将正四面体补形成一个正方体,则正四面体的外接球与正方体的外接球表示同一个球,因为正四面体的棱长为1,所以正方体的棱长为,设球的半径为,因为球的直径是正方体的对角线, 即,解得,所以球的表面积为.【点睛】本题主要考查了有关求得组合体的结构特征,以及球的表面积的计算,其中巧妙构造正方体,利用正方体的外接球的直径等于正方体的对角线长,得到球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.15、【解析】先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【详解】解: 因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中: 由椭圆的定义: 在双曲线中: ,所以双曲线的实轴长为: ,实半轴为则双曲线的离心率为: .故答案为: 【点睛】本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.16、【解析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),的最小值为.(3)时,面积取最小值为【解析】(1),利用三角函数定义分别表示,且,即可得到关于的解析式;,则,即可得到的范围;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,设为,令,则,即可设,利用导函数判断函数的单调性,即可求得的最大值,进而求解;(3)由题,则,设,利用导函数求得的最大值,即可求得的最小值.【详解】解:(1),故.因为,所以,,所以,又,则,所以,所以(2)记,则,设,则,记,则,令,则,当时,;当时,所以在上单调递增,在上单调递减,故当时取最小值,此时,的最小值为.(3)的面积,所以,设,则,设,则,令,所以当时,;当时,所以在上单调递增,在上单调递减,故当,即时,面积取最小值为【点睛】本题考查三角函数定义的应用,考查利用导函数求最值,考查运算能力.18、(1)(2)直线l的斜率为或【解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.19、(1)证明见解析;(2)证明见解析.【解析】(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【详解】(1),令,则,令得,当时,则在单调递减,当时,则在单调递增,所以,当时,即,则在上单调递增,当时,易知当时,当时,由零点存在性定理知,不妨设,使得,当时,即,当时,即,当时,即,所以在和上单调递增,在单调递减;(2)证明:构造函数,整理得,(当时等号成立),所以在上单调递增,则,所以在上单调递增,这里不妨设,欲证,即证由(1)知时,在上单调递增,则需证,由已知有,只需证,即证,由在上单调递增,且时,有,故成立,从而得证.【点睛】本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.20、(1)见解析;(2)见解析【解析】(1)求得的导函数,对分成两种情况,讨论的单调性.(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.【详解】(1).当时,此时在上单调递减;当时,由解得或,是增函数,此时在和单调递减,在单调递增.(2)由(1)知.,不妨设,令,在上是减函数,即.【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21、(1),(2)证明见解析【解析】(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,当时,.当时,满足上式.(2),令数列的前项和为.两式相减得恒成立,得证.【点睛】本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.22、(1)单调递增区间是,单调递减区间是和;(2)最大值是【解析】(1)求得,由题意可知和是函数的两个零点,根据函数的符号变化可得出的符号变化,进而可得出函数的单调递增区间和递减区间;(2)由(1)中的结论知,函数的极小值为,进而得出,解出、的值,然后利用导数可求得函数在区间上的最大值.【详解】(1),令,因为,所以的零点就是的零点,且与符号相同又因为,所以当时,即;当或时,即.所以,函数的单调递增区间是,单调递减区间是和; (2)由(1)知,是的极小值点,所以有,解得, ,所以因为函数的单调递增区间是,单调递减区间是和.所以为函数的极大值,故在区间上的最大值取和中的最大者,而,所以函数在区间上的最大值是【点睛】本题考查利用导数求函数的单调区间与最值,考查计算能力,属于中等题.