重庆市梁平区2023届中考五模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,平面直角坐标系中,矩形ABCD的边AB:BC3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y的图象经过点D,则k值为()A14B14C7D72如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD3如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为ABC2D14如图,BCDE,若A=35°,E=60°,则C等于()A60°B35°C25°D20°5如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()ABCD6如图是一个几何体的三视图,则这个几何体是( )ABCD7若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak<5Bk<5,且k1Ck5,且k1Dk>58如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A甲B乙C丙D丁9如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D610如图,已知ABDE,ABC=80°,CDE=140°,则C=()A50°B40°C30°D20°11如图,在RtABC中,ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )ABC-D12如图,直线ABCD,A70°,C40°,则E等于()A30°B40°C60°D70°二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_14在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_m15现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_16一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是_km.17如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_18在函数y中,自变量x的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点A在MON的边ON上,ABOM于B,AE=OB,DEON于E,AD=AO,DCOM于C求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.20(6分)如图,在RtABC中,C=90°,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长21(6分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案22(8分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球) ;试估算盒子里黑、白两种颜色的球各有多少只?23(8分)已知二次函数 (1)该二次函数图象的对称轴是; (2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)对于该二次函数图象上的两点,设,当时,均有,请结合图象,直接写出的取值范围24(10分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值25(10分)如图,一座钢结构桥梁的框架是ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且ADBC(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE2AE,且EFBC,垂足为点F,求支架DE的长26(12分)如图,在ABC中,C=90°,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F试判断直线BC与O的位置关系,并说明理由;若BD=2,BF=2,求O的半径27(12分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+21.4+0.91.8+0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元? (2)周内该股票收盘时的最高价,最低价分别是多少? (3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】过点D作DFx轴于点F,则AOB=DFA=90°,OAB+ABO=90°,四边形ABCD是矩形,BAD=90°,AD=BC,OAB+DAF=90°,ABO=DAF,AOBDFA,OA:DF=OB:AF=AB:AD,AB:BC=3:2,点A(3,0),B(0,6),AB:AD=3:2,OA=3,OB=6,DF=2,AF=4,OF=OA+AF=7,点D的坐标为:(7,2),k,故选B.2、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式3、A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OMOD,OMEF,MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可【详解】连接OM、OD、OF, 正六边形ABCDEF内接于O,M为EF的中点,OMOD,OMEF,MFO=60°,MOD=OMF=90°,OM=OFsinMFO=2×=,MD=,故选A【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键4、C【解析】先根据平行线的性质得出CBE=E=60°,再根据三角形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60°,A=35°,C+A=CBE,C=CBEC=60°35°=25°,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.5、C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题【详解】解:由题意可得,y=,当x=40时,y=6,故选C【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键6、B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B考点:由三视图判断几何体7、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B8、A【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】=>=,从甲和丙中选择一人参加比赛,=<<,选择甲参赛,故选A【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.9、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5×403)(x5×404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键10、B【解析】试题解析:延长ED交BC于F, ABDE, 在CDF中, 故 故选B.11、A【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90°,AC=BC=1,AB=,S扇形ABD=,又RtABC绕A点逆时针旋转30°后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.12、A【解析】ABCD,A=70°,1=A=70°,1=C+E,C=40°,E=1C=70°40°=30°故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】解:令AE=4x,BE=3x,AB=7x.四边形ABCD为平行四边形,CD=AB=7x,CDAB,BEFDCF. ,DF=【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.14、1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解详解:设这栋建筑物的高度为xm,由题意得,解得x=1,即这栋建筑物的高度为1m故答案为1点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想15、1【解析】设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.【详解】解:设小矩形的长为x,宽为y,则可列出方程组,解得,则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.16、1【解析】作CEAB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出B的度数,根据正弦的定义计算即可【详解】作CEAB于E,1km/h×30分钟=9km,AC=9km,CAB=45°,CE=ACsin45°=9km,灯塔B在它的南偏东15°方向,NCB=75°,CAB=45°,B=30°,BC=1km,故答案为:1【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键17、3【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】四边形ABCD是矩形,D=90°,BC=AD=3,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,EF=BC=3,AE=AB,DE=EF,AD=DE=3,AE=3,AB=3,故答案为3.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.18、x4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义由题意得,考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)AB、AD的长分别为2和1【解析】(1)证RtABORtDEA(HL)得AOB=DAE,ADBC证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知RtABORtDEA,AB=DE=2设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:.【详解】(1)证明:ABOM于B,DEON于E,.在RtABO与RtDEA中,RtABORtDEA(HL)AOB=DAEADBC又ABOM,DCOM,ABDC四边形ABCD是平行四边形,四边形ABCD是矩形; (2)由(1)知RtABORtDEA,AB=DE=2 设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:,解得AD=1即AB、AD的长分别为2和1【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.20、(1)见解析(2)7.5【解析】(1)只要证明A+B=90°,ADE+B=90°即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90°,ADE+BDO=90°,ACB=90°,A+B=90°,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90°,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.21、(1)y=8x+2560(30x1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1x)吨,从乙仓库运往A港口的有吨,运往B港口的有50(1x)=(x30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x0,8-x0,x-300,100-x0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1x)吨,从乙仓库运往A港口的有吨,运往B港口的有50(1x)=(x30)吨,所以y=14x+20+10(1x)+8(x30)=8x+2560,x的取值范围是30x1(2)由(1)得y=8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口考点:一次函数的应用22、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.23、 (1)x=1;(2),;(3)【解析】(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.【详解】(1)该二次函数图象的对称轴是直线;(2)该二次函数的图象开口向上,对称轴为直线,当时,的值最大,即把代入,解得该二次函数的表达式为当时,(3)易知a0,当时,均有,,解得的取值范围【点睛】本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.24、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.25、(1)sinB;(2)DE1【解析】(1)在RtABD中,利用勾股定理求出AB,再根据sinB=计算即可;(2)由EFAD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;【详解】(1)在RtABD中,BD=DC=9,AD=6,AB=3,sinB=(2)EFAD,BE=2AE,EF=4,BF=6,DF=3,在RtDEF中,DE=1考点:1.解直角三角形的应用;2.平行线分线段成比例定理.26、(1)相切,理由见解析;(1)1【解析】(1)求出OD/AC,得到ODBC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可【详解】(1)直线BC与O的位置关系是相切,理由是:连接OD,OA=OD,OAD=ODA,AD平分CAB,OAD=CAD,ODA=CAD,ODAC,C=90°,ODB=90°,即ODBC,OD为半径,直线BC与O的位置关系是相切;(1)设O的半径为R,则OD=OF=R,在RtBDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出ODBC.27、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.【解析】试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可试题解析:(1)星期二收盘价为25+21.4=25.6(元/股)答:该股票每股25.6元. (2)收盘最高价为25+2=27(元/股)收盘最低价为25+21.45+0.91.8=24.7(元/股)答:收盘最高价为27元/股,收盘最低价为24.7元/股. (3)(25.2-25) ×1000-5×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益为-51元.