浙江省宁波市北仑区江南中学2023届中考数学考试模拟冲刺卷含解析.doc
-
资源ID:88313282
资源大小:744.50KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省宁波市北仑区江南中学2023届中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列四个实数中是无理数的是( )A2.5 B C D1.4142已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x22x+kb+1=0 的根的情况是( )A有两个不相等的实数根B没有实数根C有两个相等的实数根D有一个根是 03如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )ABCD4在以下四个图案中,是轴对称图形的是()ABCD5如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:;SBCE=36;SABE=12;AEFACD,其中一定正确的是()ABCD6如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若ADE125°,则DBC的度数为( )A125°B75°C65°D55°7方程的根是( )Ax=2Bx=0Cx1=0,x2=-2D x1=0,x2=28下列计算正确的是()A +BC×6D49若二次函数的图像与轴有两个交点,则实数的取值范围是( )ABCD10下列各数中,相反数等于本身的数是( )A1B0C1D2二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tanAPD的值为_.12为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分则这组数据的中位数为_分13已知x1,x2是方程x2-3x-1=0的两根,则=_14分解因式:x3y2x2y+xy=_15口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_16如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_三、解答题(共8题,共72分)17(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用18(8分)计算:|4sin30°|+()119(8分)如图,四边形ABCD为平行四边形,BAD的角平分线AF交CD于点E,交BC的延长线于点F(1)求证:BF=CD;(2)连接BE,若BEAF,BFA=60°,BE=,求平行四边形ABCD的周长20(8分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径21(8分)(1)2018+()122(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由23(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3)求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求ABC的面积24已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】本题主要考查了无理数的定义根据无理数的定义:无限不循环小数是无理数即可求解解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C2、A【解析】判断根的情况,只要看根的判别式=b24ac的值的符号就可以了【详解】一次函数y=kx+b的图像经过第一、三、四象限k>0, b<0=b24ac=(-2)2-4(kb+1)=-4kb>0,方程x22x+kb+1=0有两个不等的实数根,故选A【点睛】根的判别式3、C【解析】解:把点(0,2)(a,0)代入,得b=2则a=,解得:k2故选C【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大4、A【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:A【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、D【解析】在ABCD中,AO=AC,点E是OA的中点,AE=CE,ADBC,AFECBE,=,AD=BC,AF=AD,;故正确;SAEF=4, =()2=,SBCE=36;故正确; =,=,SABE=12,故正确;BF不平行于CD,AEF与ADC只有一个角相等,AEF与ACD不一定相似,故错误,故选D6、D【解析】延长CB,根据平行线的性质求得1的度数,则DBC即可求得【详解】延长CB,延长CB,ADCB,1=ADE=145,DBC=1801=180125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.7、C【解析】试题解析:x(x+1)=0,x=0或x+1=0,解得x1=0,x1=-1故选C8、B【解析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断【详解】解:A、与不能合并,所以A选项不正确;B、-=2=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确故选B【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算9、D【解析】由抛物线与x轴有两个交点可得出=b2-4ac0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围【详解】抛物线y=x2-2x+m与x轴有两个交点,=b2-4ac=(-2)2-4×1×m0,即4-4m0,解得:m1故选D【点睛】本题考查了抛物线与x轴的交点,牢记“当=b2-4ac0时,抛物线与x轴有2个交点”是解题的关键10、B【解析】根据相反数的意义,只有符号不同的数为相反数【详解】解:相反数等于本身的数是1故选B【点睛】本题考查了相反数的意义注意掌握只有符号不同的数为相反数,1的相反数是1二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】首先连接BE,由题意易得BF=CF,ACPBDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在RtPBF中,即可求得tanBPF的值,继而求得答案【详解】如图:,连接BE,四边形BCED是正方形,DF=CF=CD,BF=BE,CD=BE,BECD,BF=CF,根据题意得:ACBD,ACPBDP,DP:CP=BD:AC=1:3,DP:DF=1:1,DP=PF=CF=BF,在RtPBF中,tanBPF=1,APD=BPF,tanAPD=1故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用12、1【解析】13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,第7个数是1分,中位数为1分,故答案为113、1【解析】试题解析:,是方程的两根,、,= =1故答案为114、xy(x1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=xy(x1-1x+1)=xy(x-1)1故答案为:xy(x-1)1【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键15、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比16、【解析】求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率三、解答题(共8题,共72分)17、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元【解析】(1)设购进A种树苗x棵,则购进B种树苗(12x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(12x)棵,根据题意得:80x+60(12x )=1220,解得:x=112x=2答:购进A种树苗1棵,B种树苗2棵(2)设购进A种树苗x棵,则购进B种树苗(12x)棵,根据题意得:12xx,解得:x8.3购进A、B两种树苗所需费用为80x+60(12x)=20x+120,是x的增函数,费用最省需x取最小整数9,此时12x=8,所需费用为20×9+120=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元18、41【解析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式3(2)123+21241【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.19、(1)证明见解析;(2)12【解析】(1)由平行四边形的性质和角平分线得出BAF=BFA,即可得出AB=BF;(2)由题意可证ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解【详解】解:(1)证明: 四边形ABCD为平行四边形, AB=CD,FAD=AFB又 AF平分BAD, FAD=FAB AFB=FAB AB=BF BF=CD(2)解:由题意可证ABF为等边三角形,点E是AF的中点在RtBEF中,BFA=60°,BE=,可求EF=2,BF=4 平行四边形ABCD的周长为1220、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90°,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90°,AB=2半径为1.121、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算,正确化简各数是解题的关键22、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比23、(1)y(x3)25(2)5【解析】(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解【详解】(1)设此抛物线的表达式为ya(x3)25,将点A(1,3)的坐标代入上式,得3a(13)25,解得 此抛物线的表达式为 (2)A(1,3),抛物线的对称轴为直线x3,B(5,3)令x0,则 ABC的面积【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.24、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大