欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    浙江省永康市龙川校2023届中考数学四模试卷含解析.doc

    • 资源ID:88313342       资源大小:865.50KB        全文页数:21页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    浙江省永康市龙川校2023届中考数学四模试卷含解析.doc

    2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则CDE的周长是()A7B10C11D122不等式组的正整数解的个数是()A5B4C3D23关于二次函数,下列说法正确的是( )A图像与轴的交点坐标为B图像的对称轴在轴的右侧C当时,的值随值的增大而减小D的最小值为-34如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD5如图,AB是的直径,点C,D在上,若,则的度数为ABCD6已知,则的值为ABCD7益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A众数是20B中位数是17C平均数是12D方差是268如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使DEF与ABC相似,则点F应是G,H,M,N四点中的( )AH或NBG或HCM或NDG或M9据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为ABCD10按如图所示的方法折纸,下面结论正确的个数( )290°;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个二、填空题(共7小题,每小题3分,满分21分)11已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_12如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_13已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_14若反比例函数y=的图象位于第一、三象限,则正整数k的值是_15如图,在RtABC中,C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQAB,把PCQ绕点P旋转得到PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分BAC,则CP的长为_16方程=1的解是_17如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是_cm.三、解答题(共7小题,满分69分)18(10分)如图,在菱形ABCD中,作于E,BFCD于F,求证:19(5分)20(8分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。21(10分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),ABC的三个顶点都在格点上,且直线m、n互相垂直(1)画出ABC关于直线n的对称图形ABC;(2)直线m上存在一点P,使APB的周长最小;在直线m上作出该点P;(保留画图痕迹)APB的周长的最小值为 (直接写出结果)22(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图(1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率23(12分)如图,AB是O的直径,点C是的中点,连接AC并延长至点D,使CDAC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交O于点H,连接BH求证:BD是O的切线;(2)当OB2时,求BH的长24(14分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】四边形ABCD是平行四边形,AD=BC=4,CD=AB=6,由作法可知,直线MN是线段AC的垂直平分线,AE=CE,AE+DE=CE+DE=AD,CDE的周长=CE+DE+CD=AD+CD=4+6=1故选B2、C【解析】先解不等式组得到-1x3,再找出此范围内的正整数【详解】解不等式1-2x3,得:x-1,解不等式2,得:x3,则不等式组的解集为-1x3,所以不等式组的正整数解有1、2、3这3个,故选C【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.3、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题详解:y=2x2+4x-1=2(x+1)2-3,当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答4、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30°,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30°,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90°,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.5、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90°, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.6、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 7、C【解析】根据众数、中位数、平均数以及方差的概念求解【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=12,故本选项正确;D、方差= (9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2= ,故本选项错误.故选C【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念8、C【解析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则ABC的各边分别为3、,只能F是M或N时,其各边是6、2,2与ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键9、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】解:5657万用科学记数法表示为,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值10、C【解析】1+1=2,1+1+2=180°,1+1=2=90°,故正确;1+1=2,1AEC.故不正确;1+1=90°,1+BAE=90°,1=BAE,又BC,ABEECF.故,正确;故选C.二、填空题(共7小题,每小题3分,满分21分)11、a2且a1【解析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围【详解】试题解析:关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,=b2-4ac0,即4-4×(a-2)×10,解这个不等式得,a2,又二次项系数是(a-1),a1故a的取值范围是a2且a1【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零12、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7×=3×,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键13、1【解析】先根据概率公式得到,解得.【详解】根据题意得,解得.故答案为:.【点睛】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.14、1【解析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可【详解】解:反比例函数的图象在一、三象限,2k0,即k2又k是正整数,k的值是:1故答案为:1【点睛】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限15、1【解析】连接AD,根据PQAB可知ADQ=DAB,再由点D在BAC的平分线上,得出DAQ=DAB,故ADQ=DAQ,AQ=DQ在RtCPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,PQAB,ADQ=DAB,点D在BAC的平分线上,DAQ=DAB,ADQ=DAQ,AQ=DQ,在RtABC中,AB=5,BC=3,AC=4,PQAB,CPQCBA,CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在RtCPQ中,PQ=5x,PD=PC=3x,DQ=1x,AQ=4-4x,4-4x=1x,解得x=,CP=3x=1;故答案为:1【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型16、x=3【解析】去分母得:x1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解17、5【解析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解【详解】解:如图,设圆心为O,弦为AB,切点为C如图所示则AB=8cm,CD=2cm连接OC,交AB于D点连接OA尺的对边平行,光盘与外边缘相切,OCABAD=4cm设半径为Rcm,则R2=42+(R-2)2,解得R=5,该光盘的半径是5cm故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键三、解答题(共7小题,满分69分)18、见解析【解析】由菱形的性质可得,然后根据角角边判定,进而得到.【详解】证明:菱形ABCD,在与中,【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.19、2x2【解析】分别解不等式,进而得出不等式组的解集【详解】解得:x2解得:x2故不等式组的解集为:2x2【点睛】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键20、(1);(2) (3,-4) 或(5,4)或(-5,4)【解析】(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有: 解得所以函数解析式为:(2)存在,(3,-4) 或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,则有A P3=BC, B P3=AC 即 (舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.21、(1)详见解析;(2)详见解析;.【解析】(1)根据轴对称的性质,可作出ABC关于直线n的对称图形ABC;(2)作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;由ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,APB的周长有最小值【详解】解:(1)如图ABC为所求图形(2)如图:点P为所求点ABP的周长=AB+AP+BP=AB+AP+B''P当AP与PB''共线时,APB的周长有最小值APB的周长的最小值AB+AB''=+3故答案为 +3【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质22、(1)50,360;(2) 【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种考点:1、扇形统计图,2、条形统计图,3、概率23、(1)证明见解析;(2)BH【解析】(1)先判断出AOC=90°,再判断出OCBD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【详解】(1)连接OC,AB是O的直径,点C是的中点,AOC90°,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90°,ABBD,点B在O上,BD是O的切线;(2)由(1)知,OCBD,OCEBFE,OB2,OCOB2,AB4,BF3,在RtABF中,ABF90°,根据勾股定理得,AF5,SABFABBFAFBH,ABBFAFBH,4×35BH,BH【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键24、(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=×(2t)×2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2t,则DN=2t,SMNB=×(2t)×2t=t2+2t=(t1)2+1,当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处

    注意事项

    本文(浙江省永康市龙川校2023届中考数学四模试卷含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开