辽宁省葫芦岛市高桥中学2022-2023学年中考二模数学试题含解析.doc
-
资源ID:88313346
资源大小:631KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
辽宁省葫芦岛市高桥中学2022-2023学年中考二模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列等式正确的是()Ax3x2=xBa3÷a3=aCD(7)4÷(7)2=722如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D53在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )ABCD4下列运算正确的是()Aa2a3=a6B()1=2C =±4D|6|=65如图,等腰直角三角形的顶点A、C分别在直线a、b上,若ab,1=30°,则2的度数为()A30°B15°C10°D20°6点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(5,2)C(2,5)D(2,5)7如图,已知ABCD,1=115°,2=65°,则C等于()A40°B45°C50°D60°8一元二次方程的根的情况是A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断9如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A5BCD710已知在四边形ABCD中,AD/BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )A若AB=CD,则四边形ABCD一定是等腰梯形;B若DBC=ACB,则四边形ABCD一定是等腰梯形;C若,则四边形ABCD一定是矩形;D若ACBD且AO=OD,则四边形ABCD一定是正方形二、填空题(共7小题,每小题3分,满分21分)11如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且APB=90°下列结论:PA=PB;当OA=OB时四边形OAPB是正方形;四边形OAPB的面积和周长都是定值;连接OP,AB,则ABOP其中正确的结论是_(把你认为正确结论的序号都填上)12已知点P在一次函数y=kx+b(k,b为常数,且k0,b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上(1)k的值是 ;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CEx轴于点E,记S1为四边形CEOB的面积,S2为OAB的面积,若=,则b的值是 13已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第_象限14如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是_度154的平方根是 16如图,在平面直角坐标系中,已知A(2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA,则A的坐标为_17|-3|=_;三、解答题(共7小题,满分69分)18(10分)如图,ABC内接于O,CD是O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且B=2P(1)求证:PA是O的切线;(2)若PD=,求O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长19(5分)如图,矩形ABCD中,CEBD于E,CF平分DCE与DB交于点F求证:BFBC;若AB4cm,AD3cm,求CF的长20(8分)如图,已知点E,F分别是ABCD的边BC,AD上的中点,且BAC=90°(1)求证:四边形AECF是菱形;(2)若B=30°,BC=10,求菱形AECF面积21(10分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?22(10分)如图,四边形ABCD中,C90°,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30°,DC,求EC的长.23(12分)如图,在等边中,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小聪的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012345_00说明:补全表格上相关数值保留一位小数建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_cm24(14分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0)(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PCPD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键2、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键3、A【解析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱故选A考点:由三视图判断几何体4、D【解析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.5、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出ACD=60°,即可得出2的度数详解:如图所示:ABC是等腰直角三角形,BAC=90°,ACB=45°,1+BAC=30°+90°=120°,ab,ACD=180°-120°=60°,2=ACD-ACB=60°-45°=15°;故选B点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出ACD的度数是解决问题的关键6、D【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案【详解】点关于y轴对称的点的坐标为,故选:D【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.7、C【解析】分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得C的度数详解:ABCD, 故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 8、A【解析】把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.【详解】 方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.9、C【解析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得,解得 所以,一次函数解析式y=x+1,再将A(3,m)代入,得m=×3+1=.故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.10、C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.二、填空题(共7小题,每小题3分,满分21分)11、【解析】过P作PMy轴于M,PNx轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证APMBPN,可对进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对作出判断,由APMBPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对作出判断【详解】过P作PMy轴于M,PNx轴于NP(1,1),PN=PM=1x轴y轴,MON=PNO=PMO=90°,MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,OM=ON=PN=PM=1,MPA=APB=90°,MPA=NPBMPA=NPB,PM=PN,PMA=PNB,MPANPB,PA=PB,故正确MPANPB,AM=BN,OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故正确MPANPB,四边形OAPB的面积=四边形AONP的面积+PNB的面积=四边形AONP的面积+PMA的面积=正方形PMON的面积=2OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故错误,AOB+APB=180°,点A、O、B、P共圆,且AB为直径,所以ABOP,故错误故答案为:【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON12、(1)-2;(2)【解析】(1)设点P的坐标为(m,n),则点Q的坐标为(m1,n+2),依题意得:,解得:k=2.故答案为2.(2)BOx轴,CEx轴,BOCE,AOBAEC.又, 令一次函数y=2x+b中x=0,则y=b,BO=b;令一次函数y=2x+b中y=0,则0=2x+b,解得:x=,即AO=.AOBAEC,且,,AE=,AO=,CE=BO=b,OE=AEAO=.OECE=|4|=4,即=4,解得:b=,或b= (舍去).故答案为.13、【解析】直接利用反比例函数的增减性进而得出图象的分布【详解】反比例函数y(k0),在其图象所在的每个象限内,y的值随x的值增大而减小,它的图象所在的象限是第一、三象限故答案为:一、三【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键14、60【解析】BAC=150°ABC+ACB=30°EBA=ABC,DCA=ACBEBA+ABC+DCA+ACB=2(ABC+ACB)=60°,即EBC+DCB=60°=60°15、±1【解析】试题分析:,4的平方根是±1故答案为±1考点:平方根16、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90°,ABC+ABC=90°,BAC+ABC=90°,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=1+1=2,AC=BC=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形17、1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案解答:解:|-1|=1故答案为1三、解答题(共7小题,满分69分)18、(1)证明见解析;(2);(3);【解析】(1)连接OA、AD,如图,利用圆周角定理得到B=ADC,则可证明ADC=2ACP,利用CD为直径得到DAC=90°,从而得到ADC=60°,C=30°,则AOP=60°,于是可证明OAP=90°,然后根据切线的判断定理得到结论;(2)利用P=30°得到OP=2OA,则,从而得到O的直径;(3)作EHAD于H,如图,由点B等分半圆CD得到BAC=45°,则DAE=45°,设DH=x,则DE=2x,所以 然后求出x即可得到DE的长【详解】(1)证明:连接OA、AD,如图,B=2P,B=ADC,ADC=2P,AP=AC,P=ACP,ADC=2ACP,CD为直径,DAC=90°,ADC=60°,C=30°,ADO为等边三角形,AOP=60°,而P=ACP=30°,OAP=90°,OAPA,PA是O的切线;(2)解:在RtOAP中,P=30°,OP=2OA,O的直径为;(3)解:作EHAD于H,如图,点B等分半圆CD,BAC=45°,DAE=45°,设DH=x,在RtDHE中,DE=2x,在RtAHE中, 即解得 【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理19、(1)见解析,(2)CFcm.【解析】(1)要求证:BF=BC只要证明CFB=FCB就可以,从而转化为证明BCE=BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角BCD中,根据三角形的面积等于BDCE=BCDC,就可以求出CE的长要求CF的长,可以在直角CEF中用勾股定理求得其中EF=BF-BE,BE在直角BCE中根据勾股定理就可以求出,由此解决问题【详解】证明:(1)四边形ABCD是矩形,BCD90°,CDB+DBC90°CEBD,DBC+ECB90°ECBCDBCFBCDB+DCF,BCFECB+ECF,DCFECF,CFBBCFBFBC(2)四边形ABCD是矩形,DCAB4(cm),BCAD3(cm)在RtBCD中,由勾股定理得BD又BDCEBCDC,CEBEEFBFBE3CFcm【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题20、(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积试题解析:(1)证明:四边形ABCD是平行四边形,ADBC,AD=BC在RtABC中,BAC=90°,点E是BC边的中点,AE=CE=BC同理,AF=CF=ADAF=CE四边形AECF是平行四边形平行四边形AECF是菱形(2)解:在RtABC中,BAC=90°,B=30°,BC=10,AC=5,AB=连接EF交于点O,ACEF于点O,点O是AC中点OE=EF=菱形AECF的面积是AC·EF=考点:1菱形的性质和面积;2平行四边形的性质;3解直角三角形21、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:508141012=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人)点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键22、(1)见解析;(2).【解析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360°,得出DB的长,进而得出EC的长.【详解】(1)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30°,160°.3260°.BCD90°,430°.CDE2+490°.在RtBCD中,360°,DB2.DEBE,160°,DEDB2.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.23、(1)1.1;(2)见解析;(3).【解析】(1)(2)需要认真按题目要求测量,描点作图;(3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题【详解】根据题意测量约故应填:根据题意画图:当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.故答案为(1)1.1;(2)见解析;(3)1.7.【点睛】本题考查函数作图和函数图象实际意义的理解,在中,考查学生由数量关系得到函数关系的转化思想24、 (1) y=(x1)2+9 ,D(1,9); (2)p=1;(3)存在点Q(2,1)使QBC的面积最大【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PCPD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,m2+2m+1)(0m4),然后用含m的代数式表达出BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)抛物线y=ax2+2x+1经过点B(4,0),16a+1+1=0,a=1,抛物线的解析式为y=x2+2x+1=(x1)2+9,D(1,9);(2)当x=0时,y=1,C(0,1)设直线CD的解析式为y=kx+b将点C、D的坐标代入得:,解得:k=1,b=1,直线CD的解析式为y=x+1当y=0时,x+1=0,解得:x=1,直线CD与x轴的交点坐标为(1,0)当P在直线CD上时,|PCPD|取得最大值,p=1;(3)存在,理由:如图,由(2)知,C(0,1),B(4,0),直线BC的解析式为y=2x+1,过点Q作QEy轴交BC于E,设Q(m,m2+2m+1)(0m4),则点E的坐标为:(m,2m+1),EQ=m2+2m+1(2m+1)=m2+4m,SQBC=(m2+4m)×4=2(m2)2+1,m=2时,SQBC最大,此时点Q的坐标为:(2,1)点睛:(1)解第2小题时,知道当点P在直线CD上时,|PCPD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,m2+2m+1)(0m4),并结合点B、C的坐标把BCQ的面积用含m的代数式表达出来.